[1]

Han X, Guo Y, Liu X, Xia Q, Wang Y. 2019. Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review. Catalysis Today 319:2−13

doi: 10.1016/j.cattod.2018.05.013
[2]

Wei J, Wang M, Wang F, Song X, Yu G, et al. 2021. A review on reactivity characteristics and synergy behavior of biomass and coal Co-gasification. International Journal of Hydrogen Energy 46:17116−17132

doi: 10.1016/j.ijhydene.2021.02.162
[3]

Tezer Ö, Karabağ N, Öngen A, Çolpan CÖ, Ayol A. 2022. Biomass gasification for sustainable energy production: a review. International Journal of Hydrogen Energy 47:15419−15433

doi: 10.1016/j.ijhydene.2022.02.158
[4]

Kim JY, Lee HW, Lee SM, Jae J, Park YK. 2019. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology 279:373−384

doi: 10.1016/j.biortech.2019.01.055
[5]

Wang M, Wang F. 2019. Catalytic scissoring of lignin into aryl monomers. Advanced Materials 31:e1901866

doi: 10.1002/adma.201901866
[6]

Yue X, Zhang L, Sun L, Gao S, Gao W, et al. 2021. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Applied Catalysis B: Environmental 293:120243

doi: 10.1016/j.apcatb.2021.120243
[7]

He Z, Li Y, Liu C, Li Y, Qian M, et al. 2021. Controllable conversion of biomass to lignin-silica hybrid nanoparticles: High-performance renewable dual-phase fillers. Waste Management 135:381−388

doi: 10.1016/j.wasman.2021.09.025
[8]

Li F, Zhao Y, Xue L, Ma F, Dai SY, et al. 2022. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 40:1469−1487

doi: 10.1016/j.tibtech.2022.09.009
[9]

Qiu B, Tao X, Wang J, Liu Y, Li S, et al. 2022. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Conversion and Management 261:115647

doi: 10.1016/j.enconman.2022.115647
[10]

Provin AP, dos Reis VO, Hilesheim SE, Bianchet RT, de Aguiar Dutra AR, et al. 2021. Use of bacterial cellulose in the textile industry and the wettability challenge-a review. Cellulose 28:8255−8274

doi: 10.1007/s10570-021-04059-3
[11]

Carpenter AW, de Lannoy CF, Wiesner MR. 2015. Cellulose nanomaterials in water treatment technologies. Environmental Science & Technology 49:5277−5287

doi: 10.1021/es506351r
[12]

Wan Azelee NI, Mahdi HI, Cheng Y-S, Nordin N, Illias RM, et al. 2023. Biomass degradation: Challenges and strategies in extraction and fractionation of hemicellulose. Fuel 339:126982

doi: 10.1016/j.fuel.2022.126982
[13]

Rao J, Lv Z, Chen G, Peng F. 2023. Hemicellulose: Structure, chemical modification, and application. Progress in Polymer Science 140:101675

doi: 10.1016/j.progpolymsci.2023.101675
[14]

Chin M, Suh SM, Fang Z, Hegg EL, Diao T. 2022. Depolymerization of lignin via a microscopic reverse biosynthesis pathway. ACS Catalysis 12:2532−2539

doi: 10.1021/acscatal.2c00133
[15]

Ullah M, Liu P, Xie S, Sun S. 2022. Recent advancements and challenges in lignin valorization: Green routes towards sustainable bioproducts. Molecules 27:6055

doi: 10.3390/molecules27186055
[16]

Phan DP, Lee EY. 2020. Controlled hydrogenolysis over heterogeneous catalysts for lignin valorization. Catalysis Reviews 62:607−630

doi: 10.1080/01614940.2020.1770401
[17]

Zong P, Jiang Y, Tian Y, Li J, Yuan M, et al. 2020. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil. Energy Conversion and Management 216:112777

doi: 10.1016/j.enconman.2020.112777
[18]

Gao Z, Zhou Z, Wang M, Shang N, Gao W, et al. 2023. Highly dispersed Pd anchored on heteropolyacid modified ZrO2 for high efficient hydrodeoxygenation of lignin-derivatives. Fuel 334:126768

doi: 10.1016/j.fuel.2022.126768
[19]

Marsman JH, Wildschut J, Mahfud F, Heeres HJ. 2007. Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. Journal of Chromatography A 1150:21−27

doi: 10.1016/j.chroma.2006.11.047
[20]

Zhang Q, Chang J, Wang T, Xu Y. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48:87−92

doi: 10.1016/j.enconman.2006.05.010
[21]

de Wild P, Van der Laan R, Kloekhorst A, Heeres E. 2009. Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environmental Progress & Sustainable Energy 28:461−469

doi: 10.1002/ep.10391
[22]

Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407:1−19

doi: 10.1016/j.apcata.2011.08.046
[23]

Moud PH, Kantarelis E, Andersson KJ, Engvall K. 2018. Biomass pyrolysis gas conditioning over an iron-based catalyst for mild deoxygenation and hydrogen production. Fuel 211:149−158

doi: 10.1016/j.fuel.2017.09.062
[24]

Valle B, Remiro A, García-Gómez N, Gayubo AG, Bilbao J. 2019. Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: a review. Journal of Chemical Technology and Biotechnology 94:670−689

doi: 10.1002/jctb.5758
[25]

Yildiz G, Pronk M, Djokic M, van Geem KM, Ronsse F, et al. 2013. Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. Journal of Analytical and Applied Pyrolysis 103:343−351

doi: 10.1016/j.jaap.2013.02.001
[26]

Prajitno H, Insyani R, Park J, Ryu C, Kim J. 2016. Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Applied Energy 172:12−22

doi: 10.1016/j.apenergy.2016.03.093
[27]

Zhu X, Lobban LL, Mallinson RG, Resasco DE. 2011. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis 281:21−29

doi: 10.1016/j.jcat.2011.03.030
[28]

Chen L, Wang C, Shang N, Gao S, Wang C. 2025. Highly dispersed Cu supported on urchin-like TiO2 for efficient hydrodeoxygenation of lignin derivatives. Journal of Catalysis 448:116216

doi: 10.1016/j.jcat.2025.116216
[29]

Rahimi A, Ulbrich A, Coon JJ, Stahl SS. 2014. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515:249−252

doi: 10.1038/nature13867
[30]

Ambursa MM, Sudarsanam P, Voon LH, Hamid SBA, Bhargava SK. 2017. Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Processing Technology 162:87−97

doi: 10.1016/j.fuproc.2017.03.008
[31]

Zhang J, Sun J, Wang Y. 2020. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes. Green Chemistry 22:1072−1098

doi: 10.1039/c9gc02762a
[32]

Furimsky E. 2000. Catalytic hydrodeoxygenation. Applied Catalysis A: General 199:147−190

doi: 10.1016/s0926-860x(99)00555-4
[33]

Zhang J, Sun J, Sudduth B, Pereira Hernandez X, Wang Y. 2020. Liquid-phase hydrodeoxygenation of lignin-derived phenolics on Pd/Fe: a mechanistic study. Catalysis Today 339:305−311

doi: 10.1016/j.cattod.2018.12.027
[34]

Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. 2018. Bright side of lignin depolymerization: Toward new platform chemicals. Chemical Reviews 118:614−678

doi: 10.1021/acs.chemrev.7b00588
[35]

Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, et al. 2006. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. Journal of Physical Chemistry B 110:14283−14291

doi: 10.1021/jp057332g
[36]

Nelson RC, Baek B, Ruiz P, Goundie B, Brooks A, et al. 2015. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catalysis 5:6509−6523

doi: 10.1021/acscatal.5b01554
[37]

Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, et al. 2014. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science 7:103−129

doi: 10.1039/c3ee43081b
[38]

Liu W, You W, Sun W, Yang W, Korde A, et al. 2020. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nature Energy 5:759−767

doi: 10.1038/s41560-020-00680-x
[39]

Wang H, Zhao W, Rehman MU, Liu W, Xu Y, et al. 2022. Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol. ACS Catalysis 12:4724−4736

doi: 10.1021/acscatal.2c00380
[40]

Luo Z, Zheng Z, Wang Y, Sun G, Jiang H, et al. 2016. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water. Green Chemistry 18:5845−5858

doi: 10.1039/c6gc01971d
[41]

Zheng Z, Luo Z, Zhao C. 2018. Morphologically cross-shaped Ru/HZSM-5 catalyzes tandem hydrogenolysis of guaiacol to benzene in water. ChemCatChem 10:1376−1384

doi: 10.1002/cctc.201701398
[42]

Bui VN, Toussaint G, Laurenti D, Mirodatos C, Geantet C. 2009. Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: hydrodeoxygenation of guaïacol and SRGO mixed feed. Catalysis Today 143:172−178

doi: 10.1016/j.cattod.2008.11.024
[43]

Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC. 2012. Catalytic conversion of compounds representative of lignin-derived bio-oils: a reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ-Al2O3. Catalysis Science & Technology 2:113−118

doi: 10.1039/c1cy00169h
[44]

Elliott DC. 2007. Historical developments in hydroprocessing bio-oils. Energy & Fuels 21:1792−1815

doi: 10.1021/ef070044u
[45]

Choudhary TV, Phillips CB. 2011. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General 397:1−12

doi: 10.1016/j.apcata.2011.02.025
[46]

Hicks JC. 2011. Advances in C−O bond transformations in lignin-derived compounds for biofuels production. The Journal of Physical Chemistry Letters 2:2280−2287

doi: 10.1021/jz2007885
[47]

Venkatakrishnan VK, Delgass WN, Ribeiro FH, Agrawal R. 2015. Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation. Green Chemistry 17:178−183

doi: 10.1039/c4gc01746c
[48]

Liu G, Robertson AW, Li MMJ, Kuo WCH, Darby MT, et al. 2017. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nature Chemistry 9:810−816

doi: 10.1038/nchem.2740
[49]

Cao J, Zhang Y, Liu X, Zhang C, Li Z. 2023. Comparison of Co-Mo-S and remote control model for designing efficient Co-doped MoS2 hydrodeoxygenation catalysts. Fuel 334:126640

doi: 10.1016/j.fuel.2022.126640
[50]

Diao X, Ji N, Li X, Rong Y, Zhao Y, et al. 2022. Fabricating high temperature stable Mo-Co9S8/Al2O3 catalyst for selective hydrodeoxygenation of lignin to arenes. Applied Catalysis B: Environmental 305:121067

doi: 10.1016/j.apcatb.2022.121067
[51]

Wu K, Li X, Wang W, Huang Y, Jiang Q, et al. 2022. Creating edge sites within the basal plane of a MoS2 catalyst for substantially enhanced hydrodeoxygenation activity. ACS Catalysis 12:8−17

doi: 10.1021/acscatal.1c03669
[52]

Duan H, Dong J, Gu X, Peng YK, Chen W, et al. 2017. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. Nature Communications 8:591

doi: 10.1038/s41467-017-00596-3
[53]

Sun M, Zhang Y, Liu W, Zhao X, Luo H, et al. 2022. Synergy of metallic Pt and oxygen vacancy sites in Pt–WO3−x catalysts for efficiently promoting vanillin hydrodeoxygenation to methylcyclohexane. Green Chemistry 24:9489−9495

doi: 10.1039/d2gc03144b
[54]

Zhong Z, Li J, Jian M, Shu R, Tian Z, et al. 2023. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2 catalyst: Effect of TiO2 morphology. Fuel 333:126241

doi: 10.1016/j.fuel.2022.126241
[55]

Yang Z, Luo B, Shu R, Zhong Z, Tian Z, et al. 2022. Synergistic effect of active metal–acid sites on hydrodeoxygenation of lignin-derived phenolic compounds under mild conditions using Ru/C-HPW catalyst. Fuel 319:123617

doi: 10.1016/j.fuel.2022.123617
[56]

Yang J, He Y, He J, Liu Y, Geng H, et al. 2022. Enhanced catalytic performance through in situ encapsulation of ultrafine Ru clusters within a high-aluminum zeolite. ACS Catalysis 12:1847−1856

doi: 10.1021/acscatal.1c05012
[57]

Teles CA, de Souza PM, Rabelo-Neto RC, Teran A, Jacobs G, et al. 2021. Hydrodeoxygenation of lignin-derived compound mixtures on Pd-supported on various oxides. ACS Sustainable Chemistry & Engineering 9:12870−12884

doi: 10.1021/acssuschemeng.1c03720
[58]

de Souza PM, Rabelo-Neto RC, Borges LEP, Jacobs G, Davis BH, et al. 2015. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports. ACS Catalysis 5:1318−1329

doi: 10.1021/cs501853t
[59]

Wang C, Mironenko AV, Raizada A, Chen T, Mao X, et al. 2018. Mechanistic study of the direct hydrodeoxygenation of m-cresol over WOx-decorated Pt/C catalysts. ACS Catalysis 8:7749−7759

doi: 10.1021/acscatal.8b01746
[60]

Wu D, Wang Q, Safonova OV, Peron DV, Zhou W, et al. 2021. Lignin compounds to monoaromatics: Selective cleavage of C-O bonds over a brominated ruthenium catalyst. Angewandte Chemie-International Edition 60:12513−12523

doi: 10.1002/anie.202101325
[61]

Zhang C, Zhang X, Wu J, Zhu L, Wang S. 2022. Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx. Applied Energy 328:120199

doi: 10.1016/j.apenergy.2022.120199
[62]

Chen Q, Cai C, Zhang X, Zhang Q, Chen L, et al. 2020. Amorphous FeNi-ZrO2-catalyzed hydrodeoxygenation of lignin-derived phenolic compounds to naphthenic fuel. ACS Sustainable Chemistry & Engineering 8:9335−9345

doi: 10.1021/acssuschemeng.0c01457
[63]

Gonçalves VOO, de Souza PM, Cabioc'h T, da Silva VT, Noronha FB, et al. 2017. Hydrodeoxygenation of m-cresol over nickel and nickel phosphide based catalysts. Influence of the nature of the active phase and the support. Applied Catalysis B: Environmental 219:619−628

doi: 10.1016/j.apcatb.2017.07.042
[64]

Zhu T, Liu K, Wang H, Wang J, Li F, et al. 2023. Comparative study of hydrodeoxygenation performance over Ni and Ni2P catalysts for upgrading of lignin-derived phenolic compound. Fuel 331:125663

doi: 10.1016/j.fuel.2022.125663
[65]

Lu KL, Yin F, Wei XY, Li J, Li Z, et al. 2022. Promotional effect of metallic Co and Fe on Ni-based catalysts for p-cresol deoxygenation. Fuel 321:124033

doi: 10.1016/j.fuel.2022.124033
[66]

Yang F, Liu D, Zhao Y, Wang H, Han J, et al. 2018. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catalysis 8:1672−1682

doi: 10.1021/acscatal.7b04097
[67]

Yang F, Libretto NJ, Komarneni MR, Zhou W, Miller JT, et al. 2019. Enhancement of m-cresol hydrodeoxygenation selectivity on Ni catalysts by surface decoration of MoOx species. ACS Catalysis 9:7791−7800

doi: 10.1021/acscatal.9b01285
[68]

Laurent E, Delmon B. 1994. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: I. catalytic reaction schemes. Applied Catalysis A: General 109:77−96

doi: 10.1016/0926-860X(94)85004-6
[69]

Ruddy DA, Schaidle JA, Ferrell Iii JR, Wang J, Moens L, et al. 2014. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex-situ catalytic fast pyrolysis": catalyst development through the study of model compounds. Green Chemistry 16:454−490

doi: 10.1039/c3gc41354c
[70]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 2011. Single-layer MoS2 transistors. Nature Nanotechnology 6:147−150

doi: 10.1038/nnano.2010.279
[71]

Pan H, Zhang YW. 2012. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. The Journal of Physical Chemistry C 116:11752−11757

doi: 10.1021/jp3015782
[72]

Lee TS, Esposito B, Donley MS, Zabinski JS, Tatarchuk BJ. 1996. Surface and buried-interfacial reactivity of iron and MoS2: a study of laser-deposited materials. Thin Solid Films 286:282−288

doi: 10.1016/S0040-6090(95)08219-0
[73]

Gevert BS, Otterstedt JE, Massoth FE. 1987. Kinetics of the HDO of methyl-substituted phenols. Applied Catalysis 31:119−131

doi: 10.1016/S0166-9834(00)80671-5
[74]

Dolui K, Pemmaraju CD, Sanvito S. 2012. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 6:4823−4834

doi: 10.1021/nn301505x
[75]

Dominguez Garcia E, Chen J, Oliviero E, Oliviero L, Maugé F. 2020. New insight into the support effect on HDS catalysts: evidence for the role of Mo-support interaction on the MoS2 slab morphology. Applied Catalysis B: Environmental 260:117975

doi: 10.1016/j.apcatb.2019.117975
[76]

Diao X, Ji N. 2023. Rational design of MoS2-based catalysts toward lignin hydrodeoxygenation: interplay of structure, catalysis, and stability. Journal of Energy Chemistry 77:601−631

doi: 10.1016/j.jechem.2022.11.056
[77]

Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, et al. 2007. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis 249:220−233

doi: 10.1016/j.jcat.2007.04.013
[78]

Daage M, Chianelli RR. 1994. Structure-function relations in molybdenum sulfide catalysts: The "rim-edge" model. Journal of Catalysis 149:414−427

doi: 10.1006/jcat.1994.1308
[79]

Delmon B, Froment GF. 1996. Remote control of catalytic sites by spillover species: a chemical reaction engineering approach. Catalysis Reviews 38:69−100

doi: 10.1080/01614949608006454
[80]

Wang W, Zhang K, Qiao Z, Li L, Liu P, et al. 2014. Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol. Industrial & Engineering Chemistry Research 53:10301−10309

doi: 10.1021/ie500830f
[81]

Gonçalves VOO, Brunet S, Richard F. 2016. Hydrodeoxygenation of cresols over Mo/Al2O3 and CoMo/Al2O3 sulfided catalysts. Catalysis Letters 146:1562−1573

doi: 10.1007/s10562-016-1787-5
[82]

Fu J, Lym J, Zheng W, Alexopoulos K, Mironenko AV, et al. 2020. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nature Catalysis 3:446−453

doi: 10.1038/s41929-020-0445-x
[83]

Chang JR, Chang SL, Lin TB. 1997. γ-Alumina-supported Pt catalysts for aromatics reduction: a structural investigation of sulfur poisoning catalyst deactivation. Journal of Catalysis 169:338−346

doi: 10.1006/jcat.1997.1709
[84]

Bui VN, Laurenti D, Afanasiev P, Geantet C. 2011. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Applied Catalysis B: Environmental 101:239−245

doi: 10.1016/j.apcatb.2010.10.025
[85]

Song W, Zhou S, Hu S, Lai W, Lian Y, et al. 2019. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catalysis 9:259−268

doi: 10.1021/acscatal.8b03402
[86]

Badawi M, Paul JF, Cristol S, Payen E, Romero Y, et al. 2011. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study. Journal of Catalysis 282:155−164

doi: 10.1016/j.jcat.2011.06.006
[87]

Wang W, Tan S, Wu K, Zhu G, Liu Y, et al. 2018. Hydrodeoxygenation of p-cresol as a model compound for bio-oil on MoS2: Effects of water and benzothiophene on the activity and structure of catalyst. Fuel 214:480−488

doi: 10.1016/j.fuel.2017.11.067
[88]

Qu L, Jiang X, Zhang Z, Zhang XG, Song GY, et al. 2021. A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment. Green Chemistry 23:9348−9376

doi: 10.1039/d1gc03183j
[89]

Lang M, Li H. 2022. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustainable Chemistry & Engineering 10:13208−13243

doi: 10.1021/acssuschemeng.2c04266
[90]

Lu J, Behtash S, Mamun O, Heyden A. 2015. Theoretical investigation of the reaction mechanism of the guaiacol hydrogenation over a Pt (111) catalyst. ACS Catalysis 5:2423−2435

doi: 10.1021/cs5016244
[91]

Zhang X, Tang W, Zhang Q, Li Y, Chen L, et al. 2018. Production of hydrocarbon fuels from heavy fraction of bio-oil through hydrodeoxygenative upgrading with Ru-based catalyst. Fuel 215:825−834

doi: 10.1016/j.fuel.2017.11.111
[92]

Nie L, de Souza PM, Noronha FB, An W, Sooknoi T, et al. 2014. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts. Journal of Molecular Catalysis A: Chemical 388:47−55

doi: 10.1016/j.molcata.2013.09.029
[93]

Robinson A, Ferguson GA, Gallagher JR, Cheah S, Beckham GT, et al. 2016. Enhanced hydrodeoxygenation of m-Cresol over bimetallic Pt-Mo catalysts through an oxophilic metal-induced tautomerization pathway. ACS Catalysis 6:4356−4368

doi: 10.1021/acscatal.6b01131
[94]

Shi D, Arroyo-Ramírez L, Vohs JM. 2016. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: Reaction of anisole on Pt and PtZn catalysts. Journal of Catalysis 340:219−226

doi: 10.1016/j.jcat.2016.05.020
[95]

Ballesteros-Plata D, Infantes-Molina A, Rodríguez-Cuadrado M, Rodríguez-Aguado E, Braos-García P, et al. 2017. Incorporation of molybdenum into Pd and Pt catalysts supported on commercial silica for hydrodeoxygenation reaction of dibenzofuran. Applied Catalysis A: General 547:86−95

doi: 10.1016/j.apcata.2017.08.034
[96]

Yang F, Liu D, Wang H, Liu X, Han J, et al. 2017. Geometric and electronic effects of bimetallic Ni-Re catalysts for selective deoxygenation of m-cresol to toluene. Journal of Catalysis 349:84−97

doi: 10.1016/j.jcat.2017.01.001
[97]

Liu X, An W, Turner CH, Resasco DE. 2018. Hydrodeoxygenation of m-cresol over bimetallic NiFe alloys: Kinetics and thermodynamics insight into reaction mechanism. Journal of Catalysis 359:272−286

doi: 10.1016/j.jcat.2018.01.006
[98]

Hensley AJR, Zhang R, Wang Y, McEwen JS. 2013. Tailoring the adsorption of benzene on PdFe surfaces: a density functional theory study. The Journal of Physical Chemistry C 117:24317−24328

doi: 10.1021/jp406425q
[99]

Stevens MB, Anand M, Kreider ME, Price EK, Zeledón JZ, et al. 2022. New challenges in oxygen reduction catalysis: a consortium retrospective to inform future research. Energy & Environmental Science 15:3775−3794

doi: 10.1039/d2ee01333a
[100]

Gao Y, Yu J, Zhang B, Jin W, Zhang H. 2025. Enhanced targeted deoxygenation catalytic pyrolysis of lignin to aromatic hydrocarbons over oxygen vacancies Pt-MoOx/TiO2. ChemCatChem 17:e202401727

doi: 10.1002/cctc.202401727
[101]

Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA. 2009. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie-International Edition 48:3987−3990

doi: 10.1002/anie.200900404
[102]

Zhao C, Lercher JA. 2012. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie-International Edition 51:5935−5940

doi: 10.1002/anie.201108306
[103]

XXia QN, Cuan Q, Liu XH, Gong XQ, Lu GZ, et al. 2014. Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans. Angewandte Chemie International Edition 53:9755−9760

doi: 10.1002/anie.201403440
[104]

Wang L, Zhang J, Yi X, Zheng A, Deng F, et al. 2015. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catalysis 5:2727−2734

doi: 10.1021/acscatal.5b00083
[105]

Zhao C, He J, Lemonidou AA, Li X, Lercher JA. 2011. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis 280:8−16

doi: 10.1016/j.jcat.2011.02.001
[106]

Obenaus U, Dyballa M, Lang S, Scheibe M, Hunger M. 2015. Generation and properties of brønsted acid sites in bifunctional Rh-, Ir-, Pd-, and Pt- containing zeolites Y investigated by solid-state NMR spectroscopy. The Journal of Physical Chemistry C 119:15254−15262

doi: 10.1021/acs.jpcc.5b03149
[107]

Cho HJ, Xu B. 2020. Enabling Selective Tandem Reactions via Catalyst Architecture Engineering. Trends in Chemistry 2:929−941

doi: 10.1016/j.trechm.2020.08.002
[108]

Dai C, Zhang A, Song C, Guo X. 2018. Advances in the synthesis and catalysis of solid and hollow zeolite-encapsulated metal catalysts. Advances in Catalysis 63:75−115

doi: 10.1016/bs.acat.2018.10.002
[109]

Shu R, Zhong Z, You H, Tian Z, Chen Y, et al. 2021. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2-CeO2 catalyst prepared by photochemical reduction method. Journal of the Energy Institute 99:1−8

doi: 10.1016/j.joei.2021.07.012
[110]

Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, et al. 2012. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Applied Catalysis B: Environmental 115:63−73

doi: 10.1016/j.apcatb.2011.12.005
[111]

Robinson AM, Hensley JE, Medlin JW. 2016. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review. ACS Catalysis 6:5026−5043

doi: 10.1021/acscatal.6b00923
[112]

Insyani R, Kim MK, Choi JW, Yoo CJ, Jin Suh D, et al. 2022. Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2. Chemical Engineering Journal 446:136578

doi: 10.1016/j.cej.2022.136578
[113]

Wang Z, Wang CP, Mao SJ, Lu B, Chen Y, et al. 2022. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nature Communications 13:3561

doi: 10.1038/s41467-022-31313-4
[114]

Luo WH, Cao WX, Bruijnincx PCA, Lin L, Wang A, et al. 2019. Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chemistry 21:3744−3768

doi: 10.1039/c9gc01216h
[115]

Wu H, Song J, Xie C, Wu C, Chen C, Han B. 2018. Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C. ACS Sustainable Chemistry & Engineering 6:2872−2877

doi: 10.1021/acssuschemeng.7b02993
[116]

Guo M, Peng J, Yang Q, Li C. 2018. Highly active and selective RuPd bimetallic NPs for the cleavage of the diphenyl ether C–O bond. ACS Catalysis 8:11174−11183

doi: 10.1021/acscatal.8b03253
[117]

Zhang J, Wang B, Nikolla E, Medlin JW. 2017. Directing reaction pathways through controlled reactant binding at Pd-TiO2 interfaces. Angewandte Chemie International Edition 56:6594−6598

doi: 10.1002/anie.201703669
[118]

Niederberger M, Pinna N. 2009. Aqueous and nonaqueous sol-gel chemistry. In Metal oxide nanoparticles in organic solvents: Synthesis, formation, assembly and application. London: Springer London. pp. 7−18 doi: 10.1007/978-1-84882-671-7_2

[119]

Fang H, Zheng J, Luo X, Du J, Roldan A, et al. 2017. Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Applied Catalysis A: General 529:20−31

doi: 10.1016/j.apcata.2016.10.011
[120]

Mauriello F, Ariga-Miwa H, Paone E, Pietropaolo R, Takakusagi S, et al. 2020. Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catalysis Today 357:511−517

doi: 10.1016/j.cattod.2019.06.071
[121]

Mortensen PM, Grunwaldt JD, Jensen PA, Jensen AD. 2013. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catalysis 3:1774−1785

doi: 10.1021/cs400266e
[122]

García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, et al. 2015. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1, 3-propanediol. Journal of Catalysis 323:65−75

doi: 10.1016/j.jcat.2014.12.028
[123]

Sun J, Karim AM, Zhang H, Kovarik L, Li XS, et al. 2013. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Journal of Catalysis 306:47−57

doi: 10.1016/j.jcat.2013.05.020
[124]

Zhang X, Tang W, Zhang Q, Wang T, Ma L. 2018. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Applied Energy 227:73−79

doi: 10.1016/j.apenergy.2017.08.078
[125]

Ambursa MM, Juan JC, Yahaya Y, Taufiq-Yap YH, Lin YC, et al. 2021. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renewable & Sustainable Energy Reviews 138:110667

doi: 10.1016/j.rser.2020.110667
[126]

de Souza PM, Rabelo-Neto RC, Borges LEP, Jacobs G, Davis BH, et al. 2015. Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2. ACS Catalysis 5:7385−7398

doi: 10.1021/acscatal.5b01501
[127]

Ji N, Cheng S, Jia Z, Li H, Ri P, et al. 2022. Fabricating bifunctional Co-Al2O3@USY catalyst via in-situ growth method for mild hydrodeoxygenation of lignin to naphthenes. ChemCatChem 14:e202200274

doi: 10.1002/cctc.202200274
[128]

Liu X, Xu L, Xu G, Jia W, Ma Y, et al. 2016. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions. ACS Catalysis 6:7611−7620

doi: 10.1021/acscatal.6b01785
[129]

Han GH, Lee MW, Park S, Kim HJ, Ahn JP, et al. 2019. Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP-supported Co and Ni catalysts. Journal of Catalysis 377:343−357

doi: 10.1016/j.jcat.2019.07.034
[130]

Liu X, Jia W, Xu G, Zhang Y, Fu Y. 2017. Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols over Co-Based Catalysts. ACS Sustainable Chemistry & Engineering 5:8594−8601

doi: 10.1021/acssuschemeng.7b01047
[131]

Jiang L, Guo H, Li C, Zhou P, Zhang Z. 2019. Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chemical Science 10:4458−4468

doi: 10.1039/C9SC00691E
[132]

Echeandia S, Pawelec B, Barrio VL, Arias PL, Cambra JF, et al. 2014. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel 117:1061−1073

doi: 10.1016/j.fuel.2013.10.011
[133]

He S, Li C, Chen H, Su D, Zhang B, et al. 2013. A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chemistry of Materials 25:1040−1046

doi: 10.1021/cm303517z
[134]

McDonough WF, Sun Ss. 1995. The composition of the Earth. Chemical Geology 120:223−253

doi: 10.1016/0009-2541(94)00140-4
[135]

Sun L, Zhang X, Chen L, Zhao B, Yang S, et al. 2016. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis 121:342−346

doi: 10.1016/j.jaap.2016.08.015
[136]

Hong Y, Hensley A, McEwen JS, Wang Y. 2016. Perspective on catalytic hydrodeoxygenation of biomass pyrolysis oils: essential roles of Fe-Based catalysts. Catalysis Letters 146:1621−1633

doi: 10.1007/s10562-016-1770-1
[137]

Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, et al. 2013. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Applied Catalysis B: Environmental 129:528−538

doi: 10.1016/j.apcatb.2012.09.043
[138]

Olcese RN, Lardier G, Bettahar M, Ghanbaja J, Fontana S, et al. 2013. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor. ChemSusChem 6:1490−1499

doi: 10.1002/cssc.201300191
[139]

Tan Q, Wang G, Long A, Dinse A, Buda C, et al. 2017. Mechanistic analysis of the role of metal oxophilicity in the hydrodeoxygenation of anisole. Journal of Catalysis 347:102−115

doi: 10.1016/j.jcat.2017.01.008
[140]

Tan H, Rong S, Zhao R, Cui H, Zhang NN, et al. 2022. Targeted conversion of model phenolics in pyrolysis bio-oils to arenes via hydrodeoxygenation over MoOx/BaO@SBA-15 catalyst. Chemical Engineering Journal 438:135577

doi: 10.1016/j.cej.2022.135577
[141]

Shetty M, Murugappan K, Green WH, Román-Leshkov Y. 2017. Structural properties and reactivity trends of molybdenum oxide catalysts supported on zirconia for the hydrodeoxygenation of anisole. ACS Sustainable Chemistry & Engineering 5:5293−5301

doi: 10.1021/acssuschemeng.7b00642
[142]

Kasiraju S, Grabow LC. 2018. Learning from the past: Are catalyst design principles transferrable between hydrodesulfurization and deoxygenation? AIChE Journal 64:3121−3133

doi: 10.1002/aic.16151
[143]

Ressler T, Jentoft RE, Wienold J, Günter MM, Timpe O. 2000. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. The Journal of Physical Chemistry B 104:6360−6370

doi: 10.1021/jp000690t
[144]

Talebkeikhah F, Sun S, Luterbacher JS. 2023. Sinter-resistant nickel catalyst for lignin hydrogenolysis achieved by liquid phase atomic layer deposition of alumina. Advanced Energy Materials 13:2203377

doi: 10.1002/aenm.202203377
[145]

Vo TK, Quang DT, Kim J. 2022. Spray pyrolysis-derived MoO3@Al2O3@TiO2 core-shell structures with enhanced hydrodeoxygenation performance. Catalysis Communications 169:106478

doi: 10.1016/j.catcom.2022.106478
[146]

Moon JS, Lee YK. 2015. Support effects of Ni2P catalysts on the hydrodeoxygenation of guaiacol: in situ XAFS studies. Topics in Catalysis 58:211−218

doi: 10.1007/s11244-015-0362-4
[147]

Wei X, Xue X, Wu L, Yu H, Liang J, et al. 2020. High-grade bio-oil produced from coconut shell: a comparative study of microwave reactor and core-shell catalyst. Energy 212:118692

doi: 10.1016/j.energy.2020.118692
[148]

Wang C, Ou J, Zhang T, Xia S, Kang S, et al. 2023. Sustainable aromatic production from catalytic pyrolysis of lignin mediated by a novel solid lewis acid catalyst. Fuel 348:128513

doi: 10.1016/j.fuel.2023.128513
[149]

Crucho CIC. 2024. Silica coatings: From nanostructures to biological entities. Applied Materials Today 38:102179

doi: 10.1016/j.apmt.2024.102179
[150]

Duan L, Wang C, Zhang W, Ma B, Deng Y, et al. 2021. Interfacial assembly and applications of functional mesoporous materials. Chemical Reviews 121:14349−14429

doi: 10.1021/acs.chemrev.1c00236
[151]

Jiang W, Xiao J, Gao X, An X, Leng Y, et al. 2021. In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels. Fuel 305:121470

doi: 10.1016/j.fuel.2021.121470
[152]

Wang W, Zhang H, Zhou F, Xiang Z, Zhu W, et al. 2023. Al-doped core-shell-structured Ni@mesoporous silica for highly selective hydrodeoxygenation of lignin-derived aldehydes. ACS Applied Materials & Interfaces 15:33654−33664

doi: 10.1021/acsami.3c06165
[153]

Jamsaz A, Pham-Ngoc N, Wang M, Jeong DH, Oh ES, et al. 2023. Synergistic effect of macroporosity and crystallinity on catalyst deactivation behavior over macroporous Ni/CexZr1-xO2-Al2O3 for dry reforming of methane. Chemical Engineering Journal 476:146821

doi: 10.1016/j.cej.2023.146821
[154]

Liang D, Wang Y, Wang Y, Chen M, Xie X, et al. 2024. Dry reforming of methane for syngas production over noble metals modified M-Ni@S-1 catalysts (M=Pt, Pd, Ru, Au). International Journal of Hydrogen Energy 51:1002−1015

doi: 10.1016/j.ijhydene.2023.07.135
[155]

Xue S, Luo Zy, Wang Wb, Li S, Sun H, et al. 2020. Preparation of aromatics from catalytic pyrolysis of enzymatic lignin over double-layer metal supported core-shell catalyst. Journal of Analytical and Applied Pyrolysis 150:104884

doi: 10.1016/j.jaap.2020.104884