[1]

Field DL, Barrett SCH. 2012. Disassortative mating and the maintenance of sexual polymorphism in painted maple. Molecular Ecology 21:3640−43

doi: 10.1111/j.1365-294X.2012.05643.x
[2]

Çetinbaș A, Ünal M. 2014. An overview of dichogamy in angiosperms. Research in Plant Biology 4:9−27

[3]

Lloyd DG, Webb CJ. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zealand Journal of Botany 24:135−62

doi: 10.1080/0028825X.1986.10409725
[4]

Stout AB. 1928. Dichogamy in flowering plants. Bulletin of the Torrey Botanical Club 55:141−53

doi: 10.2307/2480605
[5]

Mamut J, Xiong YZ, Tan DY, Huang SQ. 2014. Pistillate flowers experience more pollen limitation and less geitonogamy than perfect flowers in a gynomonoecious herb. New Phytologist 201:670−77

doi: 10.1111/nph.12525
[6]

Casimiro-Soriguer I, Buide ML, Narbona E. 2015. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 7:plv037

doi: 10.1093/aobpla/plv037
[7]

Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18:237−68

doi: 10.1146/annurev.es.18.110187.001321
[8]

Pendleton RL, Freeman DC, McArthur ED, Sanderson SC. 2000. Gender specialization in heterodichogamous Grayia brandegei (Chenopodiaceae): evidence for an alternative pathway to dioecy. American Journal of Botany 87:508−16

doi: 10.2307/2656594
[9]

Shang H, Luo YB, Bai WN. 2012. Influence of asymmetrical mating patterns and male reproductive success on the maintenance of sexual polymorphism in Acer pictum subsp. mono (Aceraceae). Molecular Ecology 21:3879−92

doi: 10.1111/j.1365-294X.2012.05644.x
[10]

Sato T. 2002. Phenology of sex expression and gender variation in a heterodichogamous maple, Acer japonicum. Ecology 83:1226−38

doi: 10.1890/0012-9658(2002)083[1226:POSEAG]2.0.CO;2
[11]

Zhang D, Li YY, Zhao X, Zhang C, Liu DK, et al. 2024. Molecular insights into self-incompatibility systems: from evolution to breeding. Plant Communications 5:100719

doi: 10.1016/j.xplc.2023.100719
[12]

Costa J, Torices R, Barrett SCH. 2019. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae. New Phytologist 224:1278−89

doi: 10.1111/nph.15768
[13]

Yampolsky C, Yampolsky H. 1922. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica 3:18

[14]

Pollegioni P, Olimpieri I, Woeste KE, De Simoni G, Gras M, et al. 2013. Barriers to interspecific hybridization between Juglans nigra L. and J. regia L. species. Tree Genetics & Genomes 9:291−305

doi: 10.1007/s11295-012-0555-y
[15]

Bertin RI, Newman CM. 1993. Dichogamy in angiosperms. The Botanical Review 59:112−52

doi: 10.1007/BF02856676
[16]

Sargent RD, Marden MA, Otto SP. 2006. A model of the evolution of dichogamy incorporating sex-ratio selection, anther-stigma interference, and inbreeding depression. Evolution 60:934−44

doi: 10.1111/j.0014-3820.2006.tb01172.x
[17]

Pannell JR, Verdú M. 2006. The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androdioecy. Evolution 60:660−73

doi: 10.1554/05-481.1
[18]

Honek A. 1997. Incidence of protogynous and protandrous development in the pre-imaginal stage of insect development: an overview. Acta Societas Zoologicae Bohemicae 61:113−28

[19]

Morbey YE, Ydenberg RC. 2001. Protandrous arrival timing to breeding areas: a review. Ecology Letters 4:663−73

doi: 10.1046/j.1461-0248.2001.00265.x
[20]

Mukhopadhyay A, Quader S. 2022. Fine-tuned spatiotemporal dynamics of sporophylls in movement-assisted dichogamy: a study on Clerodendrum infortunatum. Plant Species Biology 37:209−17

doi: 10.1111/1442-1984.12367
[21]

Sun Y, Dong L, Kang L, Zhong W, Jackson D, et al. 2024. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. Molecular Plant 17:1019−37

doi: 10.1016/j.molp.2024.06.007
[22]

Routley MB, Bertin RI, Husband BC. 2004. Correlated evolution of dichogamy and self-incompatibility: a phylogenetic perspective. International Journal of Plant Sciences 165:983−93

doi: 10.1086/423881
[23]

Ji MY, Bo A, Yang M, Xu JF, Jiang LL, et al. 2020. The pharmacological effects and health benefits of Platycodon grandiflorus − a medicine food homology species. Foods 9:142

doi: 10.3390/foods9020142
[24]

Tel-Zur N, Schneider B. 2009. Floral biology of Ziziphus mauritiana (Rhamnaceae). Sexual Plant Reproduction 22:73−85

doi: 10.1007/s00497-009-0093-4
[25]

Chung KF, Van der Werff H, Peng CI. 2010. Observations on the floral morphology of Sassafras randaiense (Lauraceae). Annals of the Missouri Botanical Garden 97:1−10

doi: 10.3417/2008029
[26]

Grauke LJ, Thompson TE. 1996. Variability in pecan flowering. Fruit Varieties Journal 50:140−50

[27]

Gleeson SK. 1982. Heterodichogamy in walnuts: inheritance and stable ratios. Evolution 36:892−902

doi: 10.2307/2408070
[28]

Pendleton RL, McArthur ED, Freeman DC, Blauer AC. 1988. Heterodichogamy in Grayia brandegei (Chenopodiaceae): report from a new family. American Journal of Botany 75:267−74

doi: 10.1002/j.1537-2197.1988.tb13438.x
[29]

Dommée B, Bompar JL, Denelle N. 1990. Sexual tetramorphism in Thymelaea hirsuta (Thymelaeaceae): evidence of the pathway from heterodichogamy to dioecy at the infraspecific level. American Journal of Botany 77:1449−62

doi: 10.1002/j.1537-2197.1990.tb12555.x
[30]

Tal O. 2009. Acer pseudoplatanus (Sapindaceae): heterodichogamy and thrips pollination. Plant Systematics and Evolution 278:211−21

doi: 10.1007/s00606-008-0141-9
[31]

Jong PC. 1976. Flowering and sex expression in Acer L.: a biosystematic study. Thesis. Landbouwhogeschool Wageningen, Wageningen, the Netherlands. pp. 56−61 doi: 10.18174/206182

[32]

Gabriel WJ. 1968. Dichogamy in Acer saccharum. Botanical Gazette 129:334−38

doi: 10.1086/336453
[33]

Gleiser G, Verdú M, Segarra-Moragues JG, González-Martínez SC, Pannell JR. 2008. Disassortative mating, sexual specialization, and the evolution of gender dimorphism in heterodichogamous Acer opalus. Evolution 62:1676−88

doi: 10.1111/j.1558-5646.2008.00394.x
[34]

Wang ZJ, Huang JQ, Huang YJ, Li Z, Zheng BS. 2012. Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236:613−21

doi: 10.1007/s00425-012-1634-x
[35]

Kubitzki K, Kurz H. 1984. Synchronized dichogamy and dioecy in neotropical Lauraceae. Plant Systematics and Evolution 147:253−66

doi: 10.1007/BF00989387
[36]

Renner SS. 2001. How common is heterodichogamy? Trends in Ecology & Evolution 16:595−97

doi: 10.1016/S0169-5347(01)02280-7
[37]

Roldán JS, Ashworth L. 2018. Disentangling the role of herkogamy, dichogamy and pollinators in plant reproductive assurance. Plant Ecology & Diversity 11:383−92

doi: 10.1080/17550874.2018.1517395
[38]

Thompson TE, Romberg LD. 1985. Inheritance of heterodichogamy in pecan. Journal of Heredity 76:456−58

doi: 10.1093/oxfordjournals.jhered.a110144
[39]

McCarthy BC, Quinn JA. 1990. Reproductive ecology of Carya (Juglandaceae): phenology, pollination, and breeding system of two sympatric tree species. American Journal of Botany 77:261−73

doi: 10.1002/j.1537-2197.1990.tb13551.x
[40]

Bai WN, Zeng YF, Zhang DY. 2007. Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytologist 176:699−707

doi: 10.1111/j.1469-8137.2007.02202.x
[41]

Kimura M, Seiwa K, Suyama Y, Ueno N. 2003. Flowering system of heterodichogamous Juglans ailanthifolia. Plant Species Biology 18:75−84

doi: 10.1111/j.1442-1984.2003.00088.x
[42]

Polito VS, Li NY. 1985. Pistillate flower differentiation in English walnut (Juglans regia L.): a developmental basis for heterodichogamy. Scientia Horticulturae 26:333−38

doi: 10.1016/0304-4238(85)90017-2
[43]

Wood, Milo N. 1934. Pollination and blooming habits of the Persian walnut in California. Technical Bulletin No. 387. Washington, DC: United States Department of Agriculture, Bureau of Plant Industry. pp. 3−49 doi: 10.22004/ag.econ.163726

[44]

Lord JM. 2012. Hermaphroditism and dichogamy in Stilbocarpa polaris (Araliaceae) on Campbell Island. New Zealand Journal of Botany 50:89−93

doi: 10.1080/0028825X.2011.638645
[45]

Lee H, Kang H, Park WG. 2018. A rare duodichogamous flowering system in monoecious Toona sinensis (Meliaceae). Journal of Ecology and Environment 42:7

doi: 10.1186/s41610-018-0067-2
[46]

Ye ZM, Jin XF, Yang J, Wang QF, Yang CF. 2019. Accurate position exchange of stamen and stigma by movement in opposite direction resolves the herkogamy dilemma in a protandrous plant, Ajuga decumbens (Labiatae). AoB Plants 11:plz052

doi: 10.1093/aobpla/plz052
[47]

Rosas-Guerrero V, Hernández D, Cuevas E. 2017. Influence of pollen limitation and inbreeding depression in the maintenance of incomplete dichogamy in Salvia elegans. Ecology and Evolution 7:4129−34

doi: 10.1002/ece3.2827
[48]

Etterson JR, Fliehr P, Pizza R, Gross BL. 2025. Domestication during restoration: unintentional selection during eight generations of wild seed propagation reduces herkogamy, dichogamy and heterozygosity in Clarkia pulchella. Molecular Ecology e17655

doi: 10.1111/mec.17655
[49]

Kwok A, Stephens S, Dorken M. 2023. Male reproductive success is not strongly affected by phenological changes in mate availability in monoecious Sagittaria latifolia. Royal Society Open Science 10:231117

doi: 10.1098/rsos.231117
[50]

Nashwan AJ, Joy GV. 2024. Nurses' mental health: implications of a recent case for developing and emerging economies. Academia Mental Health and Well-Being 1

doi: 10.20935/mhealthwellb7431
[51]

Barranco D, Arroyo J, Santos-Gally R. 2019. Avoiding sexual interference: herkogamy and dichogamy in style dimorphic flowers of Narcissus broussonetii (Amaryllidaceae). AoB Plants 11:plz038

doi: 10.1093/aobpla/plz038
[52]

Li B, Zhao W, Li D, Chao H, Zhao X, et al. 2018. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Science 277:296−310

doi: 10.1016/j.plantsci.2018.10.005
[53]

Darmency H, Klein EK, Gestat De Garanbé T, Gouyon PH, Richard-Molard M, et al. 2009. Pollen dispersal in sugar beet production fields. Theoretical and Applied Genetics 118:1083−92

doi: 10.1007/s00122-009-0964-y
[54]

Bertin RI. 1993. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. American Journal of Botany 80:557−60

doi: 10.1002/j.1537-2197.1993.tb13840.x
[55]

Xue S, Huang H, Xu Y, Liu L, Meng Q, et al. 2024. Transcriptomic analysis reveals the molecular basis of photoperiod-regulated sex differentiation in tropical pumpkins (Cucurbita moschata Duch.). BMC Plant Biology 24:90

doi: 10.1186/s12870-024-04777-3
[56]

Chen S, Peng X, Xie Z, Zhang M, Huang A, et al. 2025. Genetic and genomic insights into dichogamy in Zingiberaceae. Plant Communications 6:101352

doi: 10.1016/j.xplc.2025.101352
[57]

Takeno K. 2016. Stress-induced flowering: the third category of flowering response. Journal of Experimental Botany 67:4925−34

doi: 10.1093/jxb/erw272
[58]

Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, et al. 2017. Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Molecular Ecology 26:5074−85

doi: 10.1111/mec.14257
[59]

He Y, Chen T, Zeng X. 2020. Genetic and Epigenetic Understanding of the Seasonal Timing of Flowering. Plant Communications 1:100008

doi: 10.1016/j.xplc.2019.100008
[60]

Bawa KS. 1980. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics 11:15−39

doi: 10.1146/annurev.es.11.110180.000311
[61]

Yuan S, Zeng G, Zhang K, Wu M, Zhang D, et al. 2023. Diverse mating consequences of the evolutionary breakdown of the sexual polymorphism heterostyly. Proceedings of the National Academy of Sciences of the United States of America 120:e2214492120

doi: 10.1073/pnas.2214492120
[62]

Zhang P, Zhu Y, Zhou S. 2021. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L. ) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biology 21:91

doi: 10.1186/s12870-021-02873-2
[63]

Zhang G, Yang Z, Zhou S, Zhu J, Liu X, et al. 2024. Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice. Plant Cell Reports 43:264

doi: 10.1007/s00299-024-03356-y
[64]

Qu Y, Shang X, Zeng Z, Yu Y, Bian G, et al. 2023. Whole-genome duplication reshaped adaptive evolution in a relict plant species, Cyclocarya paliurus. Genomics, Proteomics & Bioinformatics 21:455−69

doi: 10.1016/j.gpb.2023.02.001
[65]

Kaur A, Zhang L, Maness NO, Ferguson L, Graham CJ, et al. 2024. Dormant carbohydrate reserves enhance pecan tree spring freeze tolerance: controlled environment observations. Frontiers in Plant Science 15:1393305

doi: 10.3389/fpls.2024.1393305
[66]

Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH. 2019. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant 12:489−505

doi: 10.1016/j.molp.2019.01.002
[67]

Kitamoto N, Ueno S, Takenaka A, Tsumura Y, Washitani I, et al. 2006. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae). American Journal of Botany 93:226−33

doi: 10.3732/ajb.93.2.226
[68]

Freytes SN, Canelo M, Cerdán PD. 2021. Regulation of flowering time: when and where? Current Opinion in Plant Biology 63:102049

doi: 10.1016/j.pbi.2021.102049
[69]

Li Z, Gao F, Liu Y, Abou-Elwafa SF, Qi J, et al. 2023. ZmGI2 regulates flowering time through multiple flower development pathways in maize. Plant Science 332:111701

doi: 10.1016/j.plantsci.2023.111701
[70]

Liang L, Zhang Z, Cheng N, Liu H, Song S, et al. 2021. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Plant, Cell & Environment 44:842−55

doi: 10.1111/pce.13987
[71]

Groh JS, Vik DC, Davis M, Monroe JG, Stevens KA, et al. 2025. Ancient structural variants control sex-specific flowering time morphs in walnuts and hickories. Science 387:eado5578

doi: 10.1126/science.ado5578
[72]

Du L, Qi S, Ma J, Xing L, Fan S, et al. 2017. Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry 120:10−23

doi: 10.1016/j.plaphy.2017.09.015
[73]

Wang Q, Qu Y, Yu Y, Mao X, Fu X. 2023. Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy. BMC Genomics 24:287

doi: 10.1186/s12864-023-09383-5
[74]

Qu Y, Chen X, Mao X, Huang P, Fu X. 2022. Transcriptome analysis reveals the role of GA3 in regulating the asynchronism of floral bud differentiation and development in Heterodichogamous Cyclocarya paliurus (Batal.) Iljinskaja. International Journal of Molecular Sciences 23:6763

doi: 10.3390/ijms23126763
[75]

Reddy P, Plozza T, Ezernieks V, Stefanelli D, Scalisi A, et al. 2022. Metabolic pathways for observed impacts of crop load on floral induction in apple. International Journal of Molecular Sciences 23:6019

doi: 10.3390/ijms23116019
[76]

Guitton B, Kelner JJ, Celton JM, Sabau X, Renou JP, et al. 2016. Analysis of transcripts differentially expressed between fruited and deflowered 'Gala' adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biology 16:55

doi: 10.1186/s12870-016-0739-y
[77]

Milyaev A, Kofler J, Klaiber I, Czemmel S, Pfannstiel J, et al. 2021. Toward systematic understanding of flower bud induction in apple: a multi-omics approach. Frontiers in Plant Science 12:604810

doi: 10.3389/fpls.2021.604810
[78]

Tanurdzic M, Banks JA. 2004. Sex-determining mechanisms in land plants. The Plant Cell 16:S61−S71

doi: 10.1105/tpc.016667
[79]

Kamachi S, Sekimoto H, Kondo N, Sakai S. 1997. Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant & Cell Physiology 38:1197−206

doi: 10.1093/oxfordjournals.pcp.a029106
[80]

Li Z, Huang S, Liu S, Pan J, Zhang Z, et al. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381−85

doi: 10.1534/genetics.109.104737
[81]

Wang R, Lin YE, Jin Q, Yao C, Zhong Y, et al. 2019. RNA-Seq analysis of gynoecious and weak female cucumber revealing the cell cycle pathway may regulate sex determination in cucumber. Gene 687:289−97

doi: 10.1016/j.gene.2018.11.071
[82]

Banks JA. 2008. MicroRNA, sex determination and floral meristem determinacy in maize. Genome Biology 9:204

doi: 10.1186/gb-2008-9-1-204
[83]

Yang J, Wei H, Hou M, Chen L, Zou T, et al. 2023. ZmSPL13 and ZmSPL29 act together to promote vegetative and reproductive transition in maize. New Phytologist 239:1505−20

doi: 10.1111/nph.19005
[84]

Chuck G, Meeley R, Irish E, Sakai H, Hake S. 2007. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics 39:1517−21

doi: 10.1038/ng.2007.20
[85]

Wei LH, Song P, Wang Y, Lu Z, Tang Q, et al. 2018. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. The Plant Cell 30:968−85

doi: 10.1105/tpc.17.00934
[86]

Zheng C, Ye M, Sang M, Wu R. 2019. A regulatory network for miR156-SPL module in Arabidopsis thaliana. International Journal of Molecular Sciences 20:6166

doi: 10.3390/ijms20246166
[87]

Lee JT. 2012. Epigenetic regulation by long noncoding RNAs. Science 338:1435−39

doi: 10.1126/science.1231776
[88]

Jiang D, Wang Y, Wang Y, He Y. 2008. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components. Public Library of Science 3:e3404

doi: 10.1371/journal.pone.0003404
[89]

Skarzyńska-Łyżwa A, Turek S, Pisz M, Aparna, Pląder W, et al. 2025. Genome-wide identification and characterization of histone acetyltransferases and deacetylases in cucumber, and their implication in developmental processes. Genes 16:127

doi: 10.3390/genes16020127
[90]

Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, et al. 2015. RNA-directed DNA methylation in plants. Plant Cell Reports 34:1857−62

doi: 10.1007/s00299-015-1839-0
[91]

Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, et al. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. The Plant Cell 21:39−53

doi: 10.1105/tpc.108.063131
[92]

Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, et al. 2011. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO Journal 30:1928−38

doi: 10.1038/emboj.2011.103
[93]

Liu P, Zhang S, Zhou B, Luo X, Zhou XF, et al. 2019. The histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis. The Plant Cell 31:430−43

doi: 10.1105/tpc.18.00693
[94]

Lee K, Park OS, Seo PJ. 2018. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. The Plant Journal 95:961−75

doi: 10.1111/tpj.14002
[95]

Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK, et al. 2012. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proceedings of the National Academy of Sciences of the United States of America 109:3576−81

doi: 10.1073/pnas.1113409109
[96]

Tourdot E, Grob S. 2023. Three-dimensional chromatin architecture in plants − general features and novelties. European Journal of Cell Biology 102:151344

doi: 10.1016/j.ejcb.2023.151344
[97]

Dong Q, Li N, Li X, Yuan Z, Xie D, et al. 2018. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal 94:1141−56

doi: 10.1111/tpj.13925
[98]

Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, et al. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755−71

doi: 10.1093/genetics/158.4.1755
[99]

Barrett SCH. 2002. Sexual interference of the floral kind. Heredity 88:154−59

doi: 10.1038/sj.hdy.6800020
[100]

Fetscher AE. 2001. Resolution of male-female conflict in an hermaphroditic flower. Proceedings of the Royal Society of London Series B: Biological Sciences 268:525−29

doi: 10.1098/rspb.2000.1395
[101]

Bertin RI, Sullivan M. 1988. Pollen interference and cryptic self-fertility in Campsis radicans. American Journal of Botany 75:1140−47

doi: 10.1002/j.1537-2197.1988.tb08827.x
[102]

Costa LBO, Carvalho IR, Ferreira LL, Szareski VJ, Pimentel JR, et al. 2019. The effects of different mechanical detasseling methods on hybrid maize seed production. Genetics and Molecular Research 18:18207

doi: 10.4238/gmr18207
[103]

Endress PK. 2020. Structural and temporal modes of heterodichogamy and similar patterns across angiosperms. Botanical Journal of the Linnean Society 193:5−18

doi: 10.1093/botlinnean/boaa001
[104]

Knopf RR, Trebitsh T. 2006. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant & Cell Physiology 47:1217−28

doi: 10.1093/pcp/pcj092
[105]

Zhang H, Li S, Yang L, Cai G, Chen H, et al. 2021. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. The Plant Cell 33:306−21

doi: 10.1093/plcell/koaa018