[1]

Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, et al. 2007. The structure of ferrihydrite, a nanocrystalline material. Science 316:1726−1729

doi: 10.1126/science.1142525
[2]

Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, et al. 2008. Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631−1635

doi: 10.1126/science.1141134
[3]

Zhang K, Zhang SJ, Liao P, Zhao YX, Gan M, et al. 2023. Impact of redox fluctuations on microbe-mediated elemental sulfur disproportionation and coupled redox cycling of iron. Water Research 245:120589

doi: 10.1016/j.watres.2023.120589
[4]

Xu X, Mansor M, Li G, Chiu TH, Haderlein SB, et al. 2025. Size-dependent reduction kinetics of iron oxides in single and mixed mineral systems. Environmental Science & Technology 59:2519−2530

doi: 10.1021/acs.est.4c08032
[5]

Wu XH, Lee B, Jun YS. 2020. Interfacial and activation energies of environmentally abundant heterogeneously nucleated iron(III) (hydr)oxide on quartz. Environmental Science & Technology 54:12119−12129

doi: 10.1021/acs.est.0c03160
[6]

Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology 12:797−808

doi: 10.1038/nrmicro3347
[7]

Deng N, Hu J, Zhang L, Ni C, Zhang Q, et al. 2024. Induced electro-Fenton triggers trace iron utilization for simultaneous organic phosphorous degradation and phosphate recovery. Chemical Engineering Journal 502:158097

doi: 10.1016/j.cej.2024.158097
[8]

Deng N, Zhu H, Fan Z, Guo C, Hu J, et al. 2025. All-In-One solution for simultaneous phosphonate degradation and orthophosphate recovery by NiFe-Layer double Hydroxide/PDS. Separation and Purification Technology 353:128495

doi: 10.1016/j.seppur.2024.128495
[9]

Baumgartner J, Faivre D. 2015. Iron solubility, colloids and their impact on iron (oxyhydr)oxide formation from solution. Earth-Science Reviews 150:520−530

doi: 10.1016/j.earscirev.2015.09.003
[10]

Yang J, Xia X, Liu J, Wang J, Hu Y. 2020. Molecular mechanisms of chromium(III) immobilization by organo-ferrihydrite co-precipitates: The significant roles of ferrihydrite and carboxyl. Environmental Science & Technology 54:4820−4828

doi: 10.1021/acs.est.9b06510
[11]

Liao P, Li WL, Jiang Y, Wu JW, Yuan SH, et al. 2017. Formation, aggregation, and deposition dynamics of NOM-Iron colloids at anoxic-oxic interfaces. Environmental Science & Technology 51:12235−12245

doi: 10.1021/acs.est.7b02356
[12]

Liao P, Li W, Wang D, Jiang Y, Pan C, et al. 2017. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. Water Research 109:347−357

doi: 10.1016/j.watres.2016.11.069
[13]

Neil CW, Ray JR, Lee B, Jun YS. 2016. Fractal aggregation and disaggregation of newly formed iron(III) (hydr)oxide nanoparticles in the presence of natural organic matter and arsenic. Environmental Science: Nano 3:647−656

doi: 10.1039/c5en00283d
[14]

Dai C, Hu Y. 2015. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption. Environmental Science & Technology 49:292−300

doi: 10.1021/es504140k
[15]

Dai C, Lin M, Hu Y. 2017. Heterogeneous Ni- and Cd-bearing ferrihydrite precipitation and recrystallization on quartz under acidic pH condition. ACS Earth and Space Chemistry 1:621−628

doi: 10.1021/acsearthspacechem.7b00097
[16]

Dai C, Zuo X, Cao B, Hu Y. 2016. Homogeneous and heterogeneous (Fex, Cr1–x)(OH)3 precipitation: Implications for Cr sequestration. Environmental Science & Technology 50:1741−1749

doi: 10.1021/acs.est.5b04319
[17]

Deng N, Li Z, Zuo X, Chen J, Shakiba S, et al. 2021. Coprecipitation of Fe/Cr hydroxides with organics: Roles of organic properties in composition and stability of the coprecipitates. Environmental Science & Technology 55:4638−4647

doi: 10.1021/acs.est.0c04712
[18]

Hu Y, Jiang X, Zhang S, Cai D, Zhou Z, et al. 2024. Coprecipitation of Fe/Cr hydroxides at organic–water interfaces: Functional group richness and (de)protonation control amounts and compositions of coprecipitates. Environmental Science & Technology 58:8501−8509

doi: 10.1021/acs.est.4c01245
[19]

Hu Y, Neil C, Lee B, Jun YS. 2013. Control of heterogeneous Fe(III) (hydr)oxide nucleation and growth by interfacial energies and local saturations. Environmental Science & Technology 47:9198−9206

doi: 10.1021/es401160g
[20]

Zhang S, Cai D, Zhou Z, Shang J, Zuo X, et al. 2025. Preferential adsorption of natural organic matter onto Al2O3 regulated heterogeneous (Fe, Cr)(OH)3 coprecipitation: roles of aromaticity and acidity. Environmental Science & Technology 59:4631−4640

doi: 10.1021/acs.est.4c10334
[21]

De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, et al. 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:aaa6760

doi: 10.1126/science.aaa6760
[22]

Chen C, Kukkadapu R, Sparks DL. 2015. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: Implications for carbon dynamics. Environmental Science & Technology 49:10927−10936

doi: 10.1021/acs.est.5b02448
[23]

Cismasu AC, Michel FM, Tcaciuc AP, Tyliszczak T, Brown GE. 2011. Composition and structural aspects of naturally occurring ferrihydrite. Comptes Rendus Geoscience 343:210−218

doi: 10.1016/j.crte.2010.11.001
[24]

Hansel CM, Learman DR, Lentini CJ, Ekstrom EB. 2011. Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochimica et Cosmochimica Acta 75:4653−4666

doi: 10.1016/j.gca.2011.05.033
[25]

Yan J, Frierdich AJ, Catalano JG. 2022. Impact of Zn substitution on Fe(II)-induced ferrihydrite transformation pathways. Geochimica et Cosmochimica Acta 320:143−160

doi: 10.1016/j.gca.2022.01.014
[26]

Guo D, Xia Q, Zeng Q, Wang X, Dong H. 2021. Antibacterial mechanisms of reduced iron-containing smectite-illite clay minerals. Environmental Science & Technology 55:15256−15265

doi: 10.1021/acs.est.1c04367
[27]

McAllister SM, Moore RM, Gartman A, III GWL, Emerson D, Chan CS. 2019. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological, and genomic perspectives. FEMS Microbiology Ecology 95:fiz015

doi: 10.1093/femsec/fiz015
[28]

Xia Q, Zhang L, Dong H, Li Z, Zhang Y, et al. 2020. Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China. Geochimica et Cosmochimica Acta 279:88−106

doi: 10.1016/j.gca.2020.03.044
[29]

Li Z, Shakiba S, Deng N, Chen J, Louie SM, et al. 2020. Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles. Environmental Science & Technology 54:6761−6770

doi: 10.1021/acs.est.0c01189
[30]

Li Z, Louie SM, Zhao J, Liu J, Zhang J, et al. 2024. Deciphering the roles of molecular weight and carboxyl richness of organic matter on their adsorption onto ferrihydrite nanoparticles and the resulting aggregation. Environmental Science & Technology 58:20480−20489

doi: 10.1021/acs.est.4c06885
[31]

Liu Y, Ding Y, Sheng A, Li X, Chen J, et al. 2023. Fe(II)-catalyzed transformation of ferrihydrite with different degrees of crystallinity. Environmental Science & Technology 57:6934−6941

doi: 10.1021/acs.est.3c00555
[32]

Pan X, Huang X, Deng N. 2024. The fate of cadmium during ferrihydrite phase transformation affected by dissolved organic matter: insights from organic-mineral interaction. Chemical Geology 670:122424

doi: 10.1016/j.chemgeo.2024.122424
[33]

Pan XF, Huang X, Deng N. 2025. Short-chain carboxylic acids influencing mineralization mechanisms of ferrihydrite transformation to hematite and goethite. Environmental Science & Technology 59:12910−12919

doi: 10.1021/acs.est.5c00455
[34]

Putnis A. 2014. Why mineral interfaces matter. Science 343:1441−1442

doi: 10.1126/science.1250884
[35]

Liu J, Inoué S, Zhu R, He H, Hochella MF. 2021. Facet-specific oxidation of Mn(II) and heterogeneous growth of manganese (oxyhydr)oxides on hematite nanoparticles. Geochimica Et Cosmochimica Acta 307:151−167

doi: 10.1016/j.gca.2021.05.043
[36]

Hu Y, Zhang S, Zhou Z, Cao Z. 2024. Heterogeneous coprecipitation of nanocrystals with metals on substrates. Accounts of Chemical Research 57:1254−1263

doi: 10.1021/acs.accounts.3c00807
[37]

Kretzschmar R, Sticher H. 1997. Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ plus and trace metals. Environmental Science & Technology 31:3497−3504

doi: 10.1021/es970244s
[38]

Jun YS, Lee B, Waychunas GA. 2010. In situ observations of nanoparticle early development kinetics at mineral-water interfaces. Environmental Science & Technology 44:8182−8189

doi: 10.1021/es101491e
[39]

Wei H, Liu J, Chen Q, Zhu R, Yan L, et al. 2023. Heterogeneous and retarded phase transformation of ferrihydrite on montmorillonite surface: The important role of surface interactions. American Mineralogist 108:865−880

doi: 10.2138/am-2022-8520
[40]

Zhang T, Tang B, Fu F. 2023. Influence of montmorillonite incorporation on ferrihydrite transformation and Cr(VI) behaviors during ferrihydrite-Cr(VI) coprecipitates aging. Science of the Total Environment 873:162257

doi: 10.1016/j.scitotenv.2023.162257
[41]

Yan L, Chen Q, Yang Y, Zhu R. 2021. The significant role of montmorillonite on the formation of hematite nanoparticles from ferrihydrite under heat treatment. Applied Clay Science 202:105962

doi: 10.1016/j.clay.2020.105962
[42]

Hu Y, Li Q, Lee B, Jun YS. 2014. Aluminum affects heterogeneous Fe(III) (hydr)oxide nucleation, growth, and ostwald ripening. Environmental Science and Technology 48:299−306

doi: 10.1021/es403777w
[43]

James RO, Healy TW. 1972. Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption. Journal of Colloid and Interface Science 40:65−81

doi: 10.1016/0021-9797(72)90174-9
[44]

Dai C, Zhao J, Giammar DE, Pasteris JD, Zuo X, et al. 2018. Heterogeneous lead phosphate nucleation at organic-water interfaces: Implications for lead immobilization. ACS Earth and Space Chemistry 2:869−877

doi: 10.1021/acsearthspacechem.8b00040
[45]

Allen N, Dai C, Hu Y, Kubicki JD, Kabengi N. 2019. Adsorption study of Al3+, Cr3+, and Mn2+ onto quartz and corundum using flow microcalorimetry, quartz crystal microbalance, and density functional theory. ACS Earth and Space Chemistry 3:432−441

doi: 10.1021/acsearthspacechem.8b00148
[46]

Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32:751−767

doi: 10.1107/s0567739476001551
[47]

Xia X, Wang J, Hu YF, Liu J, Darma AI, et al. 2022. Molecular insights into roles of dissolved organic matter in Cr(III) immobilization by coprecipitation with Fe(III) probed by STXM-ptychography and XANES spectroscopy. Environmental Science & Technology 56:2432−2442

doi: 10.1021/acs.est.1c07528
[48]

Zhang S, Cheng L, Zuo X, Cai D, Tong K, et al. 2023. (Fe,Cr)(OH)3 coprecipitation in solution and on soil: roles of surface functional groups and solution pH. Environmental Science & Technology 57:7516−7525

doi: 10.1021/acs.est.2c09216
[49]

Buist A, Rivard C, Davranche M, Brisset F, Hanna K, et al. 2024. Impact of aluminium and gallium substitutions on the ferrihydrite and goethite structure: consequences for rare earth element adsorption and complexation. Chemical Geology 667:122312

doi: 10.1016/j.chemgeo.2024.122312
[50]

Cornell RM, Giovanoli R. 1988. The influence of copper on the transformation of ferrihydrite (5Fe2O3·H2O) into crystalline products in alkaline media. Polyhedron 7:385−391

doi: 10.1016/s0277-5387(00)80487-8
[51]

Cornell RM. 1988. The influence of some divalent cations on the transformation of ferrihydrite to more crystalline products. Clay Minerals 23:329−332

doi: 10.1180/claymin.1988.023.3.10
[52]

Martin S, Zhu, C, Rule J, Nuhfer NT, Ford R, et al. 2005. A high-resolution TEM-AEM, pH titration, and modeling study of Zn2+ coprecipitation with ferrihydrite. Geochimica Et Cosmochimica Acta 69:1543−1553

doi: 10.1016/j.gca.2004.08.032
[53]

Dong J, Mao G, Hill RM. 2004. Nanoscale aggregate structures of trisiloxane surfactants at the solid-liquid interface. Langmuir 20:2695−700

doi: 10.1021/la036059b
[54]

Ge X, Xiao X, Zhang Y, Zhu X, Chu C, et al. 2025. Mechanistic insights into the inhibitory role of soil humic components in iron (oxyhydr)oxide formation: From in situ kinetics to molecular thermodynamics. Environmental Science & Technology 59:6579−6589

doi: 10.1021/acs.est.4c12300
[55]

Karlsson T, Persson P. 2012. Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe (III). Chemical Geology 322:19−27

doi: 10.1016/j.chemgeo.2012.06.003
[56]

Chen C, Dynes JJ, Wang J, Sparks DL. 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology 48:13751−13759

doi: 10.1021/es503669u
[57]

Eusterhues K, Rennert T, Knicker H, Kögel-Knabner I, Totsche KU, et al. 2011. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption. Environmental Science & Technology 45:527−533

doi: 10.1021/es1023898
[58]

Santana-Casiano JM, González-Santana D, Devresse Q, Hepach H, Santana-González C, et al. 2022. Exploring the effects of organic matter characteristics on Fe(II) oxidation kinetics in coastal seawater. Environmental Science & Technology 56:2718−2728

doi: 10.1021/acs.est.1c04512
[59]

Mikutta C, Frommer J, Voegelin A, Kaegi R, Kretzschmar R. 2010. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation. Geochimica Et Cosmochimica Acta 74:5574−5592

doi: 10.1016/j.gca.2010.06.024
[60]

Chen C, Thompson A. 2018. Ferrous iron oxidation under varying pO2 levels: the effect of Fe(III)/Al(III) oxide minerals and organic matter. Environmental Science & Technology 52:597−606

doi: 10.1021/acs.est.7b05102
[61]

Chen KY, Hsu LC, Chan YT, Cho YL, Tsao FY, et al. 2018. Phosphate removal in relation to structural development of humic acid-iron coprecipitates. Scientific Reports 8:10363

doi: 10.1038/s41598-018-28568-7
[62]

Eusterhues K, Wagner FE, Häusler W, Hanzlik M, Knicker H, et al. 2008. Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Environmental Science & Technology 42:7891−7897

doi: 10.1021/es800881w
[63]

Cornell RM, Schwertmann U. 1979. Influence of organic anions on the crystallization of ferrihydrite. Clays and Clay Minerals 27:402−410

doi: 10.1346/CCMN.1979.0270602
[64]

Ray JR, Lee B, Baltrusaitis J, Jun YS. 2012. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. Environmental Science & Technology 46:13167−13175

doi: 10.1021/es302124g
[65]

Kappler A, Pasquero C, Konhauser KO, Newman DK. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865−868

doi: 10.1130/g21658.1
[66]

Miot J, Benzerara K, Morin G, Kappler A, Bernard S, et al. 2009. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta 73:696−711

doi: 10.1016/j.gca.2008.10.033
[67]

Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF. 2009. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochimica Et Cosmochimica Acta 73:3807−3818

doi: 10.1016/j.gca.2009.02.036
[68]

Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H, et al. 2011. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Applied and Environmental Microbiology 77:2877−2881

doi: 10.1128/aem.02867-10
[69]

Wu W, Swanner ED, Hao L, Zeitvogel F, Obst M, et al. 2014. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum − implications for Precambrian Fe(II) oxidation. FEMS Microbiology Ecology 88:503−515

doi: 10.1111/1574-6941.12315
[70]

Gault AG, Ibrahim A, Langley S, Renaud R, Takahashi Y, et al. 2011. Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments. Chemical Geology 281:41−51

doi: 10.1016/j.chemgeo.2010.11.027
[71]

Burgos WD, Borch T, Troyer LD, Luan F, Larson LN, et al. 2012. Schwertmannite and Fe oxides formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: Impact on trace metal sequestration. Geochimica Et Cosmochimica Acta 76:29−44

doi: 10.1016/j.gca.2011.10.015
[72]

Emerson D, Weiss J, Megonigal J. 1999. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Applied and Environmental Microbiology 65:2758−2761

doi: 10.1128/aem.65.6.2758-2761.1999
[73]

Mavrocordatos D, Fortin D. 2002. Quantitative characterization of biotic iron oxides by analytical electron microscopy. American Mineralogist 87:940−946

doi: 10.2138/am-2002-0717
[74]

Emerson D. 2016. The irony of iron - biogenic iron oxides as an iron source to the ocean. Frontiers in Microbiology 6:1502

doi: 10.3389/fmicb.2015.01502
[75]

Coker VS, Gault AG, Pearce CI, van der Laan G, Telling ND, et al. 2006. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental Science & Technology 40:7745−7750

doi: 10.1021/es060990
[76]

Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. The ISME Journal 5:717−727

doi: 10.1038/ismej.2010.173
[77]

Kunoh T, Matsumoto S, Nagaoka N, Kanashima S, Hino K, et al. 2017. Amino group in Leptothrix sheath skeleton is responsible for direct deposition of Fe(III) minerals onto the sheaths. Scientific Reports 1:6498

doi: 10.1038/s41598-017-06644-8
[78]

Dopffel N, Jamieson J, Bryce C, Joshi P, Mansor M, et al. 2021. Temperature dependence of nitrate-reducing Fe(II) oxidation by Acidovorax strain BoFeN1 - evaluating the role of enzymatic vs. abiotic Fe(II) oxidation by nitrite. FEMS Microbiology Ecology 97:fiab155

doi: 10.1093/femsec/fiab155
[79]

Ahmed E, Holmström, SJM. 2014. Siderophores in environmental research: Roles and applications. Microbial Biotechnology 7:196−208

doi: 10.1111/1751-7915.12117
[80]

Lian B, Chen Y, Zhao J, Teng HH, Zhu L, et al. 2008. Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresource Technology 99:4825−4831

doi: 10.1016/j.biortech.2007.09.045
[81]

Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609−643

doi: 10.1099/mic.0.037143-0
[82]

Cornell RM, Schwertmann U. 2003. The iron oxides: structure, properties, reactions, occurrences, and uses. Weinheim: Wiley-VCH. 664 pp. doi: 10.1002/3527602097

[83]

Deng N, Stack AG, Weber J, Cao B, De Yoreo JJ, et al. 2019. Organic-mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Bax, Sr1-x)SO4 from undersaturated solution. Proceedings of the National Academy of Sciences of the United States of America 116:13221−13226

doi: 10.1073/pnas.1821065116
[84]

Chang H, Kim BH, Jeong HY, Moon JH, Park M, et al. 2019. Molecular-level understanding of continuous growth from iron-oxo clusters to iron oxide nanoparticles. Journal of the American Chemical Society 141:7037−7045

doi: 10.1021/jacs.9b01670