[1]

Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, et al. 2005. From dimming to brightening: decadal changes in solar radiation at Earth's surface. Science 308:847−850

doi: 10.1126/science.1103215
[2]

Gunina A, Kuzyakov Y. 2022. From energy to (soil organic) matter. Global Change Biology 28:2169−2182

doi: 10.1111/gcb.16071
[3]

Lu A, Li Y, Ding H, Xu X, Li Y, et al. 2019. Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings. Proceedings of the National Academy of Sciences 116:9741−9746

doi: 10.1073/pnas.1902473116
[4]

Huang S, Chen K, Chen X, Liao H, Zeng RJ, et al. 2023. Sunlight significantly enhances soil denitrification via an interfacial biophotoelectrochemical pathway. Environmental Science and Technology 57:7733−7742

doi: 10.1021/acs.est.3c00236
[5]

Claassens NJ, Sousa DZ, dos Santos VAPM, de Vos WM, van der Oost J. 2016. Harnessing the power of microbial autotrophy. Nature Reviews Microbiology 14:692−706

doi: 10.1038/nrmicro.2016.130
[6]

Lu A, Li Y, Jin S, Wang X, Wu XL, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications 3:768

doi: 10.1038/ncomms1768
[7]

Chen S, Chen J, Zhang L, Huang S, Liu X, et al. 2023. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. The ISME Journal 17:712−719

doi: 10.1038/s41396-023-01383-3
[8]

Dong H, Huang L, Zhao L, Zeng Q, Liu X, et al. 2022. A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Science Review 9:nwac128

doi: 10.1093/nsr/nwac128
[9]

Li S, Wen X, Liu C, Dai Y, Shi X, et al. 2021. A sustainable way to reuse Cr(VI) into an efficient biological nanometer electrocatalyst by Bacillus megaterium. Journal of Hazardous Materials 409:124942

doi: 10.1016/j.jhazmat.2020.124942
[10]

Gao B, Sun M, Ding W, Ding Z, Liu W. 2021. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Applied Catalysis B: Environmental 281:119492

doi: 10.1016/j.apcatb.2020.119492
[11]

Li S, Li L, Wen X, Yang X, Shi X, et al. 2021. Ultrasmall Pd and PtPd nanoparticles for highly efficient catalysis directed by predesigned Morchella-inspired encapsulation. Journal of Colloid and Interface Science 585:368−375

doi: 10.1016/j.jcis.2020.11.097
[12]

Guo J, Shi H, Huang X, Shi H, An Z. 2018. AgCl/Ag3PO4: A stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens. Journal of Colloid and Interface Science 515:10−17

doi: 10.1016/j.jcis.2018.01.015
[13]

Gao Y, Chen Y, Zhu F, Pan D, Huang J, et al. 2024. Revealing the biological significance of multiple metabolic pathways of chloramphenicol by Sphingobium sp. WTD-1. Journal of Hazardous Materials 469:134069

doi: 10.1016/j.jhazmat.2024.134069
[14]

Telkhozhayeva M, Hirsch B, Konar R, Teblum E, Lavi R, et al. 2022. 2D TiS2 flakes for tetracycline hydrochloride photodegradation under solar light. Applied Catalysis B: Environmental 318:121872

doi: 10.1016/j.apcatb.2022.121872
[15]

Tabelin CB, Corpuz RD, Igarashi T, Villacorte-Tabelin M, Alorro RD, et al. 2020. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. Journal of Hazardous Materials 399:122844

doi: 10.1016/j.jhazmat.2020.122844
[16]

Zhou Y, Gao Y, Xie Q, Wang J, Yue Z, et al. 2019. Reduction and transformation of nanomagnetite and nanomaghemite by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta 256:66−81

doi: 10.1016/j.gca.2019.02.040
[17]

Ju W, Bagger A, Hao GP, Varela AS, Sinev I, et al. 2017. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications 8:944

doi: 10.1038/s41467-017-01035-z
[18]

Latthe S, Chougala N, Dodamani S, Badiger H, Kumbar S, et al. 2025. Electrochemical supercapacitor properties of CuO-doped α-Fe2O3 nanosheets under mT magnetic field. Journal of Alloys and Compounds 1010:177896

doi: 10.1016/j.jallcom.2024.177896
[19]

Dong Y, Sanford RA, Boyanov MI, Flynn TM, O'Loughlin EJ, et al. 2020. Controls on iron reduction and biomineralization over broad environmental conditions as suggested by the firmicutes Orenia metallireducens Strain Z6. Environmental Science & Technology 54:10128−10140

doi: 10.1021/acs.est.0c03853
[20]

Panigrahi K, Mal S, Bhattacharyya S. 2024. Deciphering interfacial charge transfer mechanisms in electrochemical energy systems through impedance spectroscopy. Journal of Materials Chemistry A 12:14334−14353

doi: 10.1039/D4TA00537F
[21]

Li S, Wang X, Qin W, Wu M, Pan B, et al. 2025. Increased removal of ginsenoside Rb1 through the application of capacitance-enhanced biochars in soils. Carbon Research 4:32

doi: 10.1007/s44246-025-00199-4
[22]

Qiao M, Wu Q, Wang Y, Gao S, Qin R, et al. 2024. Selective hydrogenation catalysis enabled by nanoscale galvanic reactions. Chem 10:3385−3395

doi: 10.1016/j.chempr.2024.06.030
[23]

An N, Zhou L, Li W, Yuan X, Zhao L, et al. 2022. Multifunctional polymer coating cooperated with γ-Fe2O3 for boosting photoelectrochemical water oxidation. Applied Catalysis B: Environmental 318:121869

doi: 10.1016/j.apcatb.2022.121869