[1]

Singab ANB, Ayoub IM, El-Shazly M, Korinek M, Wu TY, et al. 2016. Shedding the light on Iridaceae: ethnobotany, phytochemistry and biological activity. Industrial Crops and Products 92:308−35

doi: 10.1016/j.indcrop.2016.07.040
[2]

Luan ZJ, Li PP, Li D, Meng XP, Sun J. 2020. Optimization of supercritical-CO2 extraction of Iris lactea seed oil: component analysis and antioxidant activity of the oil. Industrial Crops and Products 152:112553

doi: 10.1016/j.indcrop.2020.112553
[3]

Fan Z, Gao Y, Ren Y, Guan C, Liu R, et al. 2020. To bloom once or more times: the reblooming mechanisms of Iris germanica revealed by transcriptome profiling. BMC Genomics 21:553

doi: 10.1186/s12864-020-06951-x
[4]

Li D, Zhang J, Zhang J, Li K, Xia Y. 2017. Green period characteristics and foliar cold tolerance in 12 Iris species and cultivars in the Yangtze Delta, China. HortTechnology 27(3):399−407

doi: 10.21273/HORTTECH03692-17
[5]

Li D, Shao L, Zhang J, Wang X, Zhang D, et al. 2022. MADS-box transcription factors determine the duration of temporary winter dormancy in closely related evergreen and deciduous Iris spp. Journal of Experimental Botany 73(5):1429−49

doi: 10.1093/jxb/erab484
[6]

Xu T, Zhang J, Shao L, Wang X, Zhang R, et al. 2022. Later growth cessation and increased freezing tolerance potentially result in later dormancy in evergreen iris compared with deciduous iris. International Journal of Molecular Sciences 23(19):11123

doi: 10.3390/ijms231911123
[7]

Jozghasemi S, Rabiei V, Soleymani A, Khalighi A. 2015. Evaluation of the pigments concentration in the Iris species native to Iran. Journal of Biodiversity and Environmental Sciences 6(1):557−61

[8]

Zhang X, Yang H, Wu B, Chen H. 2022. The chloroplast genome of the Iris japonica Thunberg (Butterfly flower) reveals the genomic and evolutionary characteristics of Iris species. Mitochondrial DNA Part B 7(10):1776−82

doi: 10.1080/23802359.2022.2118000
[9]

Shi GR, Wang X, Liu YF, Zhang CL, Ni G, et al. 2016. Novel iridal metabolites with hepatoprotective activities from the whole plants of Iris japonica. Tetrahedron Letters 57(51):5761−63

doi: 10.1016/j.tetlet.2016.11.021
[10]

Shi GR, Wang X, Liu YF, Zhang CL, Ni G, et al. 2017. Bioactive flavonoid glycosides from whole plants of Iris japonica. Phytochemistry Letters 19:141−44

doi: 10.1016/j.phytol.2016.11.012
[11]

Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, et al. 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytologist 202:1024−42

doi: 10.1111/nph.12723
[12]

Hsu HF, Hsu WH, Lee YI, Mao WT, Yang JY, et al. 2015. Model for perianth formation in orchids. Nature Plants 1:15046

doi: 10.1038/nplants.2015.46
[13]

Jang S, Choi SC, Li HY, An G, Schmelzer E. 2015. Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD. PLoS One 10:e0134987

doi: 10.1371/journal.pone.0134987
[14]

Min D, Zhang X, Ji N, Li F, Shao S. 2017. The application of TRV-mediated VIGS technique in the study of gene function in fruits and vegetables. Plant Physiology Journal 53:159−66

doi: 10.13592/j.cnki.ppj.2016.0362
[15]

Yang W, Chen X, Chen J, Zheng P, Liu S, et al. 2023. Virusinduced gene silencing in the tea plant (Camellia sinensis). Plants 12:3162

doi: 10.3390/plants12173162
[16]

Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, et al. 2023. Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences 24:5608

doi: 10.3390/ijms24065608
[17]

Yang X, Liu Z, Li Y, Zou J, Zheng Y, et al. 2024. Construction and optimization of the TRV-mediated VIGS system in Areca catechu embryoids. Scientia Horticulturae 338:113621

doi: 10.1016/j.scienta.2024.113621
[18]

Kant R, Dasgupta I. 2019. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. Plant Molecular Biology 100:3−18

doi: 10.1007/s11103-019-00854-6
[19]

Ratcliff F, Martin-Hernandez AM, Baulcombe DC. 2001. Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal 25:237−45

doi: 10.1046/j.0960-7412.2000.00942.x
[20]

Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. 2022. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). Plant Methods 18:71

doi: 10.1186/s13007-022-00903-0
[21]

Tuo D, Zhou P, Yan P, Cui H, Liu Y, et al. 2021. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. Plant Methods 17:74

doi: 10.1186/s13007-021-00775-w
[22]

Zhang J, Yu D, Zhang Y, Liu K, Xu K, et al. 2017. Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize. Frontiers in Plant Science 8:393

doi: 10.3389/fpls.2017.00393
[23]

Zhou P, Peng J, Zeng M, Wu L, Fan Y, et al. 2021. Virus-induced gene silencing (VIGS) in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal 7(6):565−72

doi: 10.1016/j.hpj.2021.04.009
[24]

Deng X, Bashandy H, Ainasoja M, Kontturi J, Pietiäinen M, et al. 2014. Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytologist 201(4):1469−83

doi: 10.1111/nph.12610
[25]

Jing W, Gong F, Liu G, Deng Y, Liu J, et al. 2023. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nature Communications 14(1):7106

doi: 10.1038/s41467-023-42914-y
[26]

Lu J, Zhang G, Ma C, Li Y, Jiang C, et al. 2024. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose. The Plant Cell 36(5):1736−54

doi: 10.1093/plcell/koae035
[27]

Liang Y, Gao Q, Li F, Du Y, Wu J, et al. 2025. The giant genome of lily provides insights into the hybridization of cultivated lilies. Nature Communications 16(1):45

doi: 10.1038/s41467-024-55545-8
[28]

Pan W, Li J, Du Y, Zhao Y, Xin Y, et al. 2023. Epigenetic silencing of callose synthase by VIL1 promotes bud-growth transition in lily bulbs. Nature Plants 9(9):1451−67

doi: 10.1038/s41477-023-01492-z
[29]

Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M. 2007. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Molecular Plant-Microbe Interactions 20(11):1323−31

doi: 10.1094/MPMI-20-11-1323
[30]

Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, et al. 2018. An improved brome mosaic virus silencing vector: greater insert stability and more extensive VIGS. Plant Physiology 176(1):496−510

doi: 10.1104/pp.17.00905
[31]

Zhong X, Yuan X, Wu Z, Khan MA, Chen J, et al. 2014. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus. Plant Cell Reports 33:301−31

doi: 10.1007/s00299-013-1530-2
[32]

He G, Zhao X, Xu Y, Wang Y, Zhang Z, et al. 2023. An efficient virus-induced gene silencing (VIGS) system for gene functional studies in Miscanthus. GCB Bioenergy 15:805−20

doi: 10.1111/gcbb.13051
[33]

Chen JC, Jiang CZ, Gookin T, Hunter D, Clark D, et al. 2004. Chalcone synthase as reporter in virus-induced gene silencing studies of flower senescence. Plant Molecular Biology 55:521−30

doi: 10.1007/s11103-004-0590-7
[34]

Saitoh H, Terauchi R. 2002. Virus-induced silencing of FtsH gene in Nicotiana benthmiana causes a striking bleached leaf phenotype. Genes & Genetic Systems 77:335−40

doi: 10.1266/ggs.77.335
[35]

Yuan C, Li C, Yan L, Jackson AO, Liu Z, et al. 2011. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468

doi: 10.1371/journal.pone.0026468
[36]

Mancinotti D, Rodriguez MC, Frick KM, Dueholm B, Jepsen DG, et al. 2021. Development and application of a virus-induced gene silencing protocol for the study of gene function in narrow-leafed lupin. Plant Methods 17:131

doi: 10.1186/s13007-021-00832-4
[37]

Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. 2019. Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany 70:757−70

doi: 10.1093/jxb/ery411
[38]

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. Molecular Plant 8:68−82

doi: 10.1016/j.molp.2014.12.007
[39]

Stratmann JW, Hind SR. 2011. Gene silencing goes viral and uncovers the private life of plants. Entomologia Experimentalis et Applicata 140:91−102

doi: 10.1111/j.1570-7458.2011.01147.x
[40]

Lee WS, Rudd JJ, Kanyuka K. 2015. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genetics and Biology 79:84−88

doi: 10.1016/j.fgb.2015.04.006
[41]

He G, Zhang R, Jiang S, Wang H, Ming F. 2023. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Research 10(6):uhad080

doi: 10.1093/hr/uhad080
[42]

Dalakouras A, Jarausch W, Buchholz G, Bassler A, Braun M, et al. 2018. Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption. Frontiers in Plant Science 9:1253

doi: 10.3389/fpls.2018.01253
[43]

Chen G, Song J, Zhang Y, Guo X, Shen X. 2024. Development and application of virus-induced gene silencing (VIGS) for studying ApTT8 gene function in Agapanthus praecox ssp. orientalis. Scientia Horticulturae 324:112595

doi: 10.1016/j.scienta.2023.112595
[44]

Li G, Li Y, Yao X, Lu L. 2023. Establishment of a virus-induced gene-silencing (VIGS) system in tea plant and its use in the functional analysis of CsTCS1. International Journal of Molecular Sciences 24:392

doi: 10.3390/ijms24010392
[45]

Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, et al. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America 92:1679−83

doi: 10.1073/pnas.92.5.1679
[46]

Liu M, Liu L, Wu H, Gu Q. 2018. Research progress in VIGS technology and its application in Cucurbitaceae crops. Journal of Fruit Science 35:1422−29

doi: 10.13925/j.cnki.gsxb.20180182
[47]

Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31:777−86

doi: 10.1046/j.1365-313X.2002.01394.x
[48]

Singh B, Kukreja S, Salaria N, Thakur K, Gautam S, et al. 2019. VIGS: a flexible tool for the study of functional genomics of plants under abiotic stresses. Journal of Crop Improvement 33(5):567−604

doi: 10.1080/15427528.2019.1640821
[49]

Senthil-Kumar M, Mysore KS. 2014. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols 9:1549−62

doi: 10.1038/nprot.2014.092
[50]

Qi X, Mo Q, Li J, Zi Z, Xu M, et al. 2023. Establishment of virus-induced gene silencing (VIGS) system in Luffa acutangula using phytoene desaturase (PDS) and tendril synthesis related gene (TEN). Plant Methods 19:94

doi: 10.1186/s13007-023-01064-4
[51]

Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, et al. 2024. Applications of virus-induced gene silencing in cotton. Plants 13(2):272

doi: 10.3390/plants13020272
[52]

Gomariz-Fernández A, Sánchez-Gerschon V, Fourquin C, Ferrándiz C. 2017. The role of SHI/STY/SRS genes in organ growth and carpel development is conserved in the distant eudicot species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science 8:814

doi: 10.3389/fpls.2017.00814
[53]

Abe F, Chen RF, Yamauchi T. 1991. Iridals from Belamcanda chinensis and Iris japonica. Phytochemistry 30(10):3379−82

doi: 10.1016/0031-9422(91)83213-5
[54]

Guo Q, Wang Y, Zou J, Jing H, Li D. 2023. Efficient isolation and transformation of protoplasts in coconut endosperm and leaves for gene function studies. Tropical Plants 2:16

doi: 10.48130/TP-2023-0016
[55]

Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, et al. 2010. Nontransgenic genome modification in plant cells. Plant Physiology 154:1079−87

doi: 10.1104/pp.110.164806
[56]

Senthil-Kumar M, Mysore KS. 2011. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal 9:797−806

doi: 10.1111/j.1467-7652.2011.00589.x
[57]

Yang Q, Yang B, Li J, Wang Y, Tao R, et al. 2020. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. Plant, Cell & Environment 43(6):1360−75

doi: 10.1111/pce.13744