[1]

Ting DSJ, Foo VH, Yang LWY, Sia JT, Ang M, et al. 2021. Artificial intelligence for anterior segment diseases: emerging applications in ophthalmology. The British Journal of Ophthalmology 105:158−68

doi: 10.1136/bjophthalmol-2019-315651
[2]

Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina PM, et al. 2019. Deep learning in ophthalmology: the technical and clinical considerations. Progress in Retinal and Eye Research 72:100759

doi: 10.1016/j.preteyeres.2019.04.003
[3]

Tăuţan AM, Ionescu B, Santarnecchi E. 2021. Artificial intelligence in neurodegenerative diseases: a review of available tools with a focus on machine learning techniques. Artificial Intelligence in Medicine 117:102081

doi: 10.1016/j.artmed.2021.102081
[4]

Yang WH, Shao Y, Xu YW, Expert Workgroup of Guidelines on Clinical Research Evaluation of Artificial Intelligence in Ophthalmology (2023), Ophthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education Association. 2023. Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023). International Journal of Ophthalmology 16:1361−72

doi: 10.18240/ijo.2023.09.02
[5]

Leong YY, Vasseneix C, Finkelstein MT, Milea D, Najjar RP. 2022. Artificial intelligence meets neuro-ophthalmology. Asia-Pacific Journal of Ophthalmology 11:111−25

doi: 10.1097/APO.0000000000000512
[6]

Muro-Fuentes EA, Stunkel L. 2022. Diagnostic error in neuro-ophthalmology: avenues to improve. Current Neurology and Neuroscience Reports 22:243−56

doi: 10.1007/s11910-022-01189-4
[7]

McClelland C, Van Stavern GP, Shepherd JB, Gordon M, Huecker J. 2012. Neuroimaging in patients referred to a neuro-ophthalmology service: the rates of appropriateness and concordance in interpretation. Ophthalmology 119:1701−4

doi: 10.1016/j.ophtha.2012.01.044
[8]

Stunkel L, MacKay DD, Bruce BB, Newman NJ, Biousse V. 2020. Referral patterns in neuro-ophthalmology. Journal of Neuro-Ophthalmology 40:485−93

doi: 10.1097/WNO.0000000000000846
[9]

Bruce BB, Biousse V, Newman NJ. 2015. Nonmydriatic ocular fundus photography in neurologic emergencies. JAMA Neurology 72:455−59

doi: 10.1001/jamaneurol.2014.4053
[10]

Sachdeva V, Vasseneix C, Hage R, Bidot S, Clough LC, et al. 2018. Optic nerve head edema among patients presenting to the emergency department. Neurology 90:e373−e379

doi: 10.1212/WNL.0000000000004895
[11]

Akbar S, Akram MU, Sharif M, Tariq A, Yasin UU. 2017. Decision support system for detection of papilledema through fundus retinal images. Journal of Medical Systems 41:66

doi: 10.1007/s10916-017-0712-9
[12]

Ahn JM, Kim S, Ahn KS, Cho SH, Kim US. 2019. Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema. BMC Ophthalmology 19:178

doi: 10.1186/s12886-019-1184-0
[13]

Milea D, Najjar RP, Jiang Z, Ting D, Vasseneix C, et al. 2020. Artificial intelligence to detect papilledema from ocular fundus photographs. New England Journal of Medicine 382:1687−95

doi: 10.1056/nejmoa1917130
[14]

Biousse V, Newman NJ, Najjar RP, Vasseneix C, Xu X, et al. 2020. Optic disc classification by deep learning versus expert neuro-ophthalmologists. Annals of Neurology 88:785−95

doi: 10.1002/ana.25839
[15]

Vasseneix C, Najjar RP, Xu X, Tang Z, Loo JL, et al. 2021. Accuracy of a deep learning system for classification of papilledema severity on ocular fundus photographs. Neurology 97:e369−e377

doi: 10.1212/WNL.0000000000012226
[16]

Osaguona VB. 2016. Differential diagnoses of the pale/white/atrophic disc. Community Eye Health 29:71−74

[17]

Cao Z, Sun C, Wang W, Zheng X, Wu J, et al. 2021. Multi-modality fusion learning for the automatic diagnosis of optic neuropathy. Pattern Recognition Letters 142:58−64

doi: 10.1016/j.patrec.2020.12.009
[18]

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, et al. 2017. Glaucoma. The Lancet 390:2183−93

doi: 10.1016/S0140-6736(17)31469-1
[19]

Trouilloud A, Ferry E, Boucart M, Kauffmann L, Warniez A, et al. 2023. Impact of glaucoma on the spatial frequency processing of scenes in central vision. Visual Neuroscience 40:E001

doi: 10.1017/S0952523822000086
[20]

Li Z, He Y, Keel S, Meng W, Chang RT, et al. 2018. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125:1199−206

doi: 10.1016/j.ophtha.2018.01.023
[21]

Yang HK, Kim YJ, Sung JY, Kim DH, Kim KG, et al. 2020. Efficacy for differentiating nonglaucomatous versus glaucomatous optic neuropathy using deep learning systems. American Journal of Ophthalmology 216:140−46

doi: 10.1016/j.ajo.2020.03.035
[22]

Li F, Yan L, Wang Y, Shi J, Chen H, et al. 2020. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Graefe's Archive for Clinical and Experimental Ophthalmology 258:851−67

doi: 10.1007/s00417-020-04609-8
[23]

McClatchey SK. 2019. Fatal flaws in the design of pediatric ophthalmology and strabismus studies. Journal of American Association for Pediatric Ophthalmology and Strabismus 23:191−92

doi: 10.1016/j.jaapos.2019.05.009
[24]

Viikki K, Isotalo E, Juhola M, Pyykkö I. 2001. Using decision tree induction to model oculomotor data. Scandinavian Audiology 30:103−5

doi: 10.1080/010503901300007227
[25]

D'Addio G, Ricciardi C, Improta G, Bifulco P, Cesarelli M. 2019. Feasibility of machine learning in predicting features related to congenital nystagmus. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019, 26−28 September 2019, Coimbra, Portugal. Cham: Springer International Publishing. pp. 907−13 doi: 10.1007/978-3-030-31635-8_110

[26]

Li B, Ding YJ, Shao Y. 2020. Research progress on application of artificial intelligence in pediatric ophthalmology [人工智能在小儿眼科领域的应用研究进展]. International Eye Science [国际眼科杂志] 20(8):1363−66 (in Chinese)

doi: 10.3980/j.issn.1672-5123.2020.8.14
[27]

Sousa de Almeida JD, Silva AC, Teixeira JAM, Paiva AC, Gattass M. 2015. Computer-aided methodology for syndromic strabismus diagnosis. Journal of Digital Imaging 28:462−73

doi: 10.1007/s10278-014-9758-0
[28]

de Figueiredo LA, Dias JVP, Polati M, Carricondo PC, Debert I. 2021. Strabismus and artificial intelligence app: optimizing diagnostic and accuracy. Translational Vision Science & Technology 10:22

doi: 10.1167/tvst.10.7.22
[29]

Zheng C, Yao Q, Lu J, Xie X, Lin S, et al. 2021. Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning. Translational Vision Science & Technology 10:33

doi: 10.1167/tvst.10.1.33
[30]

Lu J, Fan Z, Zheng C, Feng J, Huang L, et al. 2018. Automated strabismus detection for telemedicine applications. arXiv Preprint

doi: 10.48550/arXiv.1809.02940
[31]

Jung SM, Umirzakova S, Whangbo TK. 2019. Strabismus classification using face features. 2019 International Symposium on Multimedia and Communication Technology (ISMAC). 19−21 August 2019, Quezon City, Philippines. USA: IEEE. pp. 1−4 doi: 10.1109/ismac.2019.8836174

[32]

Chen Z, Fu H, Lo WL, Chi Z. 2018. Strabismus recognition using eye-tracking data and convolutional neural networks. Journal of Healthcare Engineering 2018:7692198

doi: 10.1155/2018/7692198
[33]

Valente TLA, de Almeida JDS, Silva AC, Teixeira JAM, Gattass M. 2017. Automatic diagnosis of strabismus in digital videos through cover test. Computer Methods and Programs in Biomedicine 140:295−305

doi: 10.1016/j.cmpb.2017.01.002
[34]

Thurtell M. 2015. Treatment of nystagmus. Seminars in Neurology 35:522−26

doi: 10.1055/s-0035-1563575
[35]

Abadi RV. 2002. Mechanisms underlying nystagmus. Journal of the Royal Society of Medicine 95:231−34

doi: 10.1177/014107680209500504
[36]

Wagle N, Morkos J, Liu J, Reith H, Greenstein J, et al. 2022. aEYE: a deep learning system for video nystagmus detection. Frontiers in Neurology 13:963968

doi: 10.3389/fneur.2022.963968
[37]

Li H, Yang Z. 2023. Vertical nystagmus recognition based on deep learning. Sensors 23:1592

doi: 10.3390/s23031592
[38]

Kong S, Huang Z, Deng W, Zhan Y, Lv J, et al. 2023. Nystagmus patterns classification framework based on deep learning and optical flow. Computers in Biology and Medicine 153:106473

doi: 10.1016/j.compbiomed.2022.106473
[39]

Nair AG, Patil-Chhablani P, Venkatramani DV, Gandhi RA. 2014. Ocular myasthenia gravis: a review. Indian Journal of Ophthalmology 62:985−91

doi: 10.4103/0301-4738.145987
[40]

Smith SV, Lee AG. 2017. Update on ocular myasthenia gravis. Neurologic Clinics 35:115−23

doi: 10.1016/j.ncl.2016.08.008
[41]

Liu G, Wei Y, Xie Y, Li J, Qiao L, et al. 2021. A computer-aided system for ocular myasthenia gravis diagnosis. Tsinghua Science and Technology 26:749−58

doi: 10.26599/TST.2021.9010025
[42]

Gwathmey KG, Pearson KT. 2019. Diagnosis and management of sensory polyneuropathy. British Medical Journal 365:l1108

doi: 10.2307/26963054
[43]

Shih KC, Lam KS, Tong L. 2017. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutrition & Diabetes 7:e251

doi: 10.1038/nutd.2017.4
[44]

Williams BM, Borroni D, Liu R, Zhao Y, Zhang J, et al. 2020. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 63:419−30

doi: 10.1007/s00125-019-05023-4
[45]

Teh K, Armitage P, Tesfaye S, Selvarajah D. 2023. Deep learning classification of treatment response in diabetic painful neuropathy: a combined machine learning and magnetic resonance neuroimaging methodological study. Neuroinformatics 21:35−43

doi: 10.1007/s12021-022-09603-5
[46]

Mou L, Qi H, Liu Y, Zheng Y, Matthew P, et al. 2022. DeepGrading: deep learning grading of corneal nerve tortuosity. IEEE Transactions on Medical Imaging 41:2079−91

doi: 10.1109/tmi.2022.3156906
[47]

Lee IH, Miller NR, Zan E, Tavares F, Blitz AM, et al. 2015. Visual defects in patients with pituitary adenomas: the myth of bitemporal Hemianopsia. AJR American Journal of Roentgenology 205:W512−W518

doi: 10.2214/AJR.15.14527
[48]

Ogra S, Nichols AD, Stylli S, Kaye AH, Savino PJ, et al. 2014. Visual acuity and pattern of visual field loss at presentation in pituitary adenoma. Journal of Clinical Neuroscience 21:735−40

doi: 10.1016/j.jocn.2014.01.005
[49]

Greenfield DS, Siatkowski RM, Glaser JS, Schatz NJ, Parrish RK 2nd. 1998. The cupped disc. Who needs neuroimaging? Ophthalmology 105:1866−74

doi: 10.1016/S0161-6420(98)91031-4
[50]

Drummond SR, Weir C. 2010. Chiasmal compression misdiagnosed as normal-tension glaucoma: can we avoid the pitfalls? International Ophthalmology 30:215−19

doi: 10.1007/s10792-009-9308-9
[51]

Thomas PBM, Chan T, Nixon T, Muthusamy B, White A. 2019. Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics. Eye 33:1133−39

doi: 10.1038/s41433-019-0386-2
[52]

Güven A, Polat K, Kara S, Güneş S. 2008. The effect of generalized discriminate analysis (GDA) to the classification of optic nerve disease from VEP signals. Computers in Biology and Medicine 38:62−68

doi: 10.1016/j.compbiomed.2007.07.002
[53]

Kara S, Güven A. 2007. Neural network-based diagnosing for optic nerve disease from visual-evoked potential. Journal of Medical Systems 31:391−96

doi: 10.1007/s10916-007-9081-0
[54]

Weber KP, Rappoport D, Dysli M, Schmückle Meier T, Marks GB, et al. 2017. Strabismus measurements with novel video goggles. Ophthalmology 124:1849−56

doi: 10.1016/j.ophtha.2017.06.020
[55]

Bastani PB, Rieiro H, Badihian S, Otero-Millan J, Farrell N, et al. 2024. Quantifying induced nystagmus using a smartphone eye tracking application (EyePhone). Journal of the American Heart Association 13:e030927

doi: 10.1161/JAHA.123.030927
[56]

Ran AR, Cheung CY, Wang X, Chen H, Luo LY, et al. 2019. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. The Lancet Digital Health 1:e172−e182

doi: 10.1016/S2589-7500(19)30085-8
[57]

Wei SH, Song HL. 2020. The review and prospect of the decade of neuro-ophthalmology in China [我国神经眼科的十年回顾与展望]. Chinese Journal of Ocular Fundus Diseases [中华眼底病杂志] 36:253−56 (in Chinese)

doi: 10.3760/cma.j.cn511434-20200207-00042
[58]

Sun T, Zhang YQ, Shao Y. 2020. The application of artificial intelligence on ophthalmic diseases [人工智能及其在眼科疾病诊疗中的应用]. Recent Advances in Ophthalmology [眼科新进展] 40:793−96 (in Chinese)

doi: 10.13389/j.cnki.rao.2020.0181
[59]

Chen JH, Asch SM. 2017. Machine learning and prediction in medicine - beyond the peak of inflated expectations. The New England Journal of Medicine 376:2507−9

doi: 10.1056/NEJMp1702071
[60]

Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, et al. 2020. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689

doi: 10.1136/bmj.m689
[61]

Chan EJJ, Najjar RP, Tang Z, Milea D. 2021. Deep learning for retinal image quality assessment of optic nerve head disorders. Asia-Pacific Journal of Ophthalmology 10:282−88

doi: 10.1097/APO.0000000000000404
[62]

McNamara SL, Yi PH, Lotter W. 2024. The clinician-AI interface: intended use and explainability in FDA-cleared AI devices for medical image interpretation. NPJ Digital Medicine 7:80

doi: 10.1038/s41746-024-01080-1
[63]

An S, Teo K, McConnell MV, Marshall J, Galloway C, et al. 2025. AI explainability in oculomics: How it works, its role in establishing trust, and what still needs to be addressed. Progress in Retinal and Eye Research 106:101352

doi: 10.1016/j.preteyeres.2025.101352