[1]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263−276

doi: 10.1038/nrmicro.2018.9
[2]

Melillo JM. 2021. Disruption of the global nitrogen cycle: a grand challenge for the twenty-first century. Ambio 50:759−63

doi: 10.1007/s13280-020-01429-2
[3]

Byun E, Müller C, Parisse B, Napoli R, Zhang JB, et al. 2024. A global dataset of gross nitrogen transformation rates across terrestrial ecosystems. Scientific Data 11:1022

doi: 10.1038/s41597-024-03871-3
[4]

Zhang J, Müller C, Cai Z. 2015. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry 84:199−209

doi: 10.1016/j.soilbio.2015.02.028
[5]

Müller C, Rütting T, Kattge J, Laughlin RJ, Stevens RJ. 2007. Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology and Biochemistry 39:715−726

doi: 10.1016/j.soilbio.2006.09.021
[6]

Müller C, Laughlin RJ, Spott O, Rütting T. 2014. Quantification of N2O emission pathways via a 15N tracing model. Soil Biology and Biochemistry 72:44−54

doi: 10.1016/j.soilbio.2014.01.013
[7]

Zhang JB, Cai ZC, Zhu TB, Yang WY, Müller C. 2013. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Scientific Reports 3: 2342

doi: 10.1038/srep02342
[8]

Zhang J, Tian P, Tang J, Yuan L, Ke Y, et al. 2016. The characteristics of soil N transformations regulate the composition of hydrologic N export from terrestrial ecosystem. Journal of Geophysical Research: Biogeosciences 121:1409−1419

doi: 10.1002/2016jg003398
[9]

Wang J, Zhu B, Zhang J, Müller C, Cai Z. 2015. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry 91:222−231

doi: 10.1016/j.soilbio.2015.08.039
[10]

Zhang J, Cai Z, Müller C. 2018. Terrestrial N cycling associated with climate and plant-specific N preferences: a review. European Journal of Soil Science 69:488−501

doi: 10.1111/ejss.12533
[11]

Zhang J, Wang J, Müller C, Cai Z. 2016. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics. Soil Biology and Biochemistry 103:63−70

doi: 10.1016/j.soilbio.2016.08.009
[12]

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences 368:1621

doi: 10.1098/rstb.2013.0122
[13]

Inselsbacher E, Wanek W, Strauss J, Zechmeister-Boltenstern S, Müller C. 2013. A novel 15N tracer model reveals: plant nitrate uptake governs nitrogen transformation rates in agricultural soils. Soil Biology and Biochemistry 57:301−310

doi: 10.1016/j.soilbio.2012.10.010
[14]

He X, Chi Q, Cai Z, Cheng Y, Zhang J, et al. 2020. 15N tracing studies including plant N uptake processes provide new insights on gross N transformations in soil-plant systems. Soil Biology and Biochemistry 141:107666

doi: 10.1016/j.soilbio.2019.107666
[15]

He M, Dai S, Zhu Q, Wang W, Chen S, et al. 2024. Understanding the stimulation of microbial oxidation of organic N to nitrate in plant soil systems. Soil Biology and Biochemistry 190:109312

doi: 10.1016/j.soilbio.2024.109312
[16]

Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, et al. 2006. Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem. Ecological Applications 16:2091−122

doi: 10.1890/1051-0761(2006)016[2091:Mfmdda]2.0.Co;2
[17]

Hayashi K. 2022. Nitrogen cycling and management focusing on the central role of soils: a review. Soil Science and Plant Nutrition 68:514−525

doi: 10.1080/00380768.2022.2125789
[18]

Almaraz M, Wong MY, Yang WH. 2020. Looking back to look ahead: a vision for soil denitrification research. Ecology 101:e02917

doi: 10.1002/ecy.2917
[19]

Qin S, Hu C, Oenema O. 2012. Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method. Soil Biology and Biochemistry 47:14−17

doi: 10.1016/j.soilbio.2011.12.019
[20]

Qin S, Pang Y, Clough T, Wrage-Mönnig N, Hu C, et al. 2017. N2 production via aerobic pathways may play a significant role in nitrogen cycling in upland soils. Soil Biology and Biochemistry 108:36−40

doi: 10.1016/j.soilbio.2017.01.019
[21]

Yuan H, Zeng J, Yuan D, Zhang L, Qin S, et al. 2020. Co-application of a biochar and an electric potential accelerates soil nitrate removal while decreasing N2O emission. Soil Biology and Biochemistry 149:107946

doi: 10.1016/j.soilbio.2020.107946
[22]

Chen S, Wang F, Zhang Y, Qin S, Wei S, et al. 2018. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environmental Microbiology 20:980−92

doi: 10.1111/1462-2920.14027
[23]

Qin S, Hu C, Clough TJ, Luo J, Oenema O, et al. 2017. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0–2 m soil profile. Soil Biology and Biochemistry 106:1−8

doi: 10.1016/j.soilbio.2016.12.001
[24]

Wu D, Wei Z, Well R, Shan J, Yan X, et al. 2018. Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: a case study of direct soil-born N2 measurements. Soil Biology and Biochemistry 127:301−304

doi: 10.1016/j.soilbio.2018.10.002
[25]

Wei Z, Shan J, Chai Y, Well R, Yan X, et al. 2020. Regulation of the product stoichiometry of denitrification in intensively managed soils. Food and Energy Security 9(4):e251

doi: 10.1002/fes3.251
[26]

Wei Z, Well R, Ma X, Lewicka-Szczebak D, Rohe L, et al. 2024. Organic fertilizer amendment decreased N2O/(N2O+N2) ratio by enhancing the mutualism between bacterial and fungal denitrifiers in high nitrogen loading arable soils. Soil Biology and Biochemistry 198:109550

doi: 10.1016/j.soilbio.2024.109550
[27]

Wang R, Pan Z, Zheng X, Ju X, Yao Z, et al. 2020. Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biology and Biochemistry 148:107904

doi: 10.1016/j.soilbio.2020.107904
[28]

Wei Z, Shan J, Well R, Yan X, Senbayram M. 2022. Land use conversion and soil moisture affect the magnitude and pattern of soil-borne N2, NO, and N2O emissions. Geoderma 407:115568

doi: 10.1016/j.geoderma.2021.115568
[29]

Senbayram M, Wei Z, Wu D, Shan J, Yan X, et al. 2022. Inhibitory effect of high nitrate on N2O reduction is offset by long moist spells in heavily N loaded arable soils. Biology and Fertility of Soils 58:77−90

doi: 10.1007/s00374-021-01612-x
[30]

Senbayram M, Well R, Shan J, Bol R, Burkart S, et al. 2020. Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant and Soil 448:509−522

doi: 10.1007/s11104-020-04457-9
[31]

Li X, Xia L, Yan X. 2014. Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil. Biology and Fertility of Soils 50:891−900

doi: 10.1007/s00374-014-0910-2
[32]

Wang S, Shan J, Xia Y, Tang Q, Xia L, et al. 2017. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons. Science of The Total Environment 593–594:347−356

doi: 10.1016/j.scitotenv.2017.03.159
[33]

Xia L, Li X, Ma Q, Lam SK, Wolf B, et al. 2020. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology 26:2292−2303

doi: 10.1111/gcb.14958
[34]

Shan J, Zhao X, Sheng R, Xia Y, Ti C, et al. 2016. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environmental Science & Technology 50:9972−9980

doi: 10.1021/acs.est.6b01765
[35]

Yang WH, Weber KA, Silver WL. 2012. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience 5:538−541

doi: 10.1038/ngeo1530
[36]

Ding LJ, An XL, Li S, Zhang GL, Zhu YG. 2014. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environmental Science & Technology 48:10641−10647

doi: 10.1021/es503113s
[37]

Ding B, Li Z, Qin Y. 2017. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron (III) reduction in a riparian zone. Environmental Pollution 231:379−386

doi: 10.1016/j.envpol.2017.08.027
[38]

Li H, Su JQ, Yang XR, Zhou GW, Lassen SB, et al. 2019. RNA stable isotope probing of potential feammox population in paddy soil. Environmental Science & Technology 53:4841−4849

doi: 10.1021/acs.est.8b05016
[39]

Jensen ES, Hauggaard-Nielsen H. 2003. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant and Soil 252:177−186

doi: 10.1023/A:1024189029226
[40]

Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics 42:489−512

doi: 10.1146/annurev-ecolsys-102710-145034
[41]

App AA, Watanabe I, Ventura TS, Bravo M, Jurey CD. 1986. The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Science 141:448−452

doi: 10.1097/00010694-198606000-00008
[42]

Roger PA, Ladha J. 1992. Biological N2 Fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil 141:41−55

doi: 10.1007/BF00011309
[43]

Zhu Z. 1989. Progress in irrigated rice research. In Dynamics of Soil Nitrogen and Its Management. pp. 151–64 https://eurekamag.com/research/002/076/002076988.php

[44]

Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, et al. 2008. Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research. www.aciar.gov.au

[45]

Bei Q, Liu G, Tang H, Cadisch G, Rasche F, et al. 2013. Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice–soil system. Soil Biology and Biochemistry 59:25−31

doi: 10.1016/j.soilbio.2013.01.008
[46]

Wang X, Liu B, Ma J, Zhang Y, Hu T, et al. 2019. Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biology and Biochemistry 131:81−89

doi: 10.1016/j.soilbio.2018.12.028
[47]

Bei Q, Xie Z, Cadisch G, Rasche F. 2019. K-strategic ammonia-oxidizing bacteria capitalize on biological nitrogen fixation in a flooded, unfertilized rice soil. Biology and Fertility of Soils 55:713−722

doi: 10.1007/s00374-019-01387-2
[48]

Wang X, Wu M, Wei Z, Hazard C, Nicol GW, et al. 2024. Investigating drivers of free-living diazotroph activity in paddy soils across China. Soil Biology and Biochemistry 199:109601

doi: 10.1016/j.soilbio.2024.109601
[49]

Chiewattanakul M, McAleer ADA, Reay MK, Griffiths RI, Buss HL, et al. 2022. Compound-specific amino acid 15N-stable isotope probing for the quantification of biological nitrogen fixation in soils. Soil Biology and Biochemistry 169:108654

doi: 10.1016/j.soilbio.2022.108654
[50]

Radajewski S, Ineson P, Parekh NR, Murrell JC. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646−649

doi: 10.1038/35001054
[51]

Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. 2007. Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Applied and Environmental Microbiology 73:3196−3204

doi: 10.1128/AEM.02610-06
[52]

Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. 2008. 15N2–DNA–stable isotope probing of diazotrophic methanotrophs in soil. Soil Biology and Biochemistry 40:1272−1283

doi: 10.1016/j.soilbio.2007.05.006
[53]

Addison SL, McDonald IR, Lloyd-Jones G. 2010. Identifying diazotrophs by incorporation of nitrogen from 15N2 into RNA. Applied Microbiology and Biotechnology 87:2313−2322

doi: 10.1007/s00253-010-2731-z
[54]

Addison SL, McDonald IR, Lloyd-Jones G. 2010. Stable isotope probing: Technical considerations when resolving 15N-labeled RNA in gradients. Journal of Microbiological Methods 80:70−75

doi: 10.1016/j.mimet.2009.11.002
[55]

Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, et al. 2018. Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environmental Microbiology 20:44−61

doi: 10.1111/1462-2920.13954
[56]

Ma J, Bei Q, Wang X, Lan P, Liu G, et al. 2019. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of The Total Environment 649:686−694

doi: 10.1016/j.scitotenv.2018.08.318
[57]

Wang X, Bei Q, Yang W, Zhang H, Hao J, et al. 2020. Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing. Biology and Fertility of Soils 56:1189−1199

doi: 10.1007/s00374-020-01497-2
[58]

Cao W, Zhao J, Cai Y, Mo Y, Ma J, et al. 2024. Ridge with no-tillage facilitates microbial N2 fixation associated with methane oxidation in rice soil. Science of The Total Environment 923:171172

doi: 10.1016/j.scitotenv.2024.171172
[59]

Shinoda R, Bao Z, Minamisawa K. 2019. CH4 oxidation-dependent 15N2 fixation in rice roots in a low-nitrogen paddy field and in Methylosinus sp. strain 3S-1 isolated from the roots. Soil Biology and Biochemistry 132:40−46

doi: 10.1016/j.soilbio.2019.01.021
[60]

Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, et al. 2015. Complete nitrification by Nitrospira bacteria. Nature 528:504−509

doi: 10.1038/nature16461
[61]

van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, et al. 2015. Complete nitrification by a single microorganism. Nature 528:555−559

doi: 10.1038/nature16459
[62]

Jung MY, Sedlacek CJ, Kits KD, Mueller AJ, Rhee SK, et al. 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. The ISME Journal 16:272−283

doi: 10.1038/s41396-021-01064-z
[63]

Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, et al. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269−272

doi: 10.1038/nature23679
[64]

Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976−979

doi: 10.1038/nature08465
[65]

Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, et al. 2010. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. The ISME Journal 4:542−552

doi: 10.1038/ismej.2009.138
[66]

Soliman M, Eldyasti A. 2018. Ammonia-Oxidizing Bacteria (AOB): opportunities and applications—a review. Reviews in Environmental Science and Bio/Technology 17:285−321

doi: 10.1007/s11157-018-9463-4
[67]

Sakoula D, Koch H, Frank J, Jetten MSM, van Kessel MAHJ, et al. 2021. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. The ISME Journal 15:1010−1024

doi: 10.1038/s41396-020-00827-4
[68]

Ward BB. 1987. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Archives of Microbiology 147:126−133

doi: 10.1007/BF00415273
[69]

Wang B, Zhao J, Guo Z, Ma J, Xu H, et al. 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. The ISME Journal 9:1062−1075

doi: 10.1038/ismej.2014.194
[70]

Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, et al. 2016. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environmental Microbiology Reports 8:983−992

doi: 10.1111/1758-2229.12477
[71]

Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, et al. 2016. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology 92:fiw057

doi: 10.1093/femsec/fiw057
[72]

Han S, Kim S, Sedlacek CJ, Farooq A, Song C, et al. 2024. Adaptive traits of Nitrosocosmicus clade ammonia-oxidizing archaea. mBio 15:e02169-24

doi: 10.1128/mbio.02169-24
[73]

Qin W, Wei SP, Zheng Y, Choi E, Li X, et al. 2024. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nature Microbiology 9:524−536

doi: 10.1038/s41564-023-01593-7
[74]

Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, et al. 2015. Cyanate as an energy source for nitrifiers. Nature 524:105−108

doi: 10.1038/nature14856
[75]

Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, et al. 2019. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology 4:234−243

doi: 10.1038/s41564-018-0316-2
[76]

Palatinszky M, Herbold CW, Sedlacek CJ, Pühringer D, Kitzinger K, et al. 2024. Growth of complete ammonia oxidizers on guanidine. Nature 633:646−53

doi: 10.1038/s41586-024-07832-z
[77]

de Boer W, Laanbroek HJ. 1989. Ureolytic nitrification at low pH by Nitrosospira spec. Archives of Microbiology 152:178−181

doi: 10.1007/BF00456098
[78]

Koper TE, El-Sheikh AF, Norton JM, Klotz MG. 2004. Urease-encoding genes in ammonia-oxidizing bacteria. Applied Environmental Microbiology 70:2342−2348

doi: 10.1128/AEM.70.4.2342-2348.2004
[79]

Sliekers AO, Haaijer S, Schmid M, Harhangi H, Verwegen K, et al. 2004. Nitrification and anammox with urea as the energy source. Systematic and Applied Microbiology 27:271−278

doi: 10.1078/0723-2020-00259
[80]

Zheng Y, Wang B, Gao P, Yang Y, Xu B, et al. 2024. Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments. The ISME Journal 18:wrad002

doi: 10.1093/ismejo/wrad002
[81]

Abby SS, Kerou M, Schleper C. 2020. Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. mBio 11:e02371-20

doi: 10.1128/mbio.02371-20
[82]

Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, et al. 2021. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Molecular Biology and Evolution 38:3637−3648

doi: 10.1093/molbev/msab129
[83]

Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, et al. 2015. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proceedings of the National Academy of Sciences 112:9370−9375

doi: 10.1073/pnas.1419329112
[84]

Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, et al. 2020. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. The ISME Journal 14:2595−2609

doi: 10.1038/s41396-020-0710-7
[85]

Ren M, Feng X, Huang Y, Wang H, Hu Z, et al. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. The ISME Journal 13:2150−2161

doi: 10.1038/s41396-019-0418-8
[86]

Wang B, Qin W, Ren Y, Zhou X, Jung MY, et al. 2019. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. The ISME Journal 13:3067−3079

doi: 10.1038/s41396-019-0493-x
[87]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide N2O: the dominant ozone-depleting substance emitted in the 21st century. Science 326:123−125

doi: 10.1126/science.1176985
[88]

Kozlowski JA, Kits KD, Stein LY. 2016. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Frontiers in Microbiology 7:1090

doi: 10.3389/fmicb.2016.01090
[89]

Caranto JD, Vilbert AC, Lancaster KM. 2016. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proceedings of the National Academy of Sciences of the United States of America 113:14704−14709

doi: 10.1073/pnas.1611051113
[90]

Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, et al. 2019. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications 10:1836

doi: 10.1038/s41467-019-09790-x
[91]

Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. The ISME Journal 10:1836−1845

doi: 10.1038/ismej.2016.2
[92]

Voland RW, Wang H, Abruña HD, Lancaster KM. 2025. Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon Nitrosopumilus maritimus. Proceedings of the National Academy of Sciences of the United States of America 122:e2416971122

doi: 10.1073/pnas.2416971122
[93]

Breider F, Yoshikawa C, Makabe A, Toyoda S, Wakita M, et al. 2019. Response of N2O production rate to ocean acidification in the western North Pacific. Nature Climate Change 9:954−958

doi: 10.1038/s41558-019-0605-7
[94]

Jung MY, Gwak JH, Rohe L, Giesemann A, Kim JG, et al. 2019. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. The ISME Journal 13:2633−2638

doi: 10.1038/s41396-019-0460-6
[95]

Wu MR, Hou TT, Liu Y, Miao LL, Ai GM, et al. 2021. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N2 with a previously unknown pathway. Environmental Microbiology 23:6965−6980

doi: 10.1111/1462-2920.15751
[96]

Wu MR, Miao LL, Liu Y, Qian XX, Hou TT, et al. 2022. Identification and characterization of a novel hydroxylamine oxidase, DnfA, that catalyzes the oxidation of hydroxylamine to N2. Journal of Biological Chemistry 298:102372

doi: 10.1016/j.jbc.2022.102372
[97]

Broda E. 1977. Two kinds of lithotrophs missing in nature. Zeitschrift Fur Allgemeine Mikrobiologie 17:491−493

doi: 10.1002/jobm.3630170611
[98]

Qiu JG, Liu SJ. 2025. Dirammox (direct ammonia oxidation) to nitrogen (N2): discovery, current status, and perspectives. Current Opinion in Microbiology 83:102565

doi: 10.1016/j.mib.2024.102565
[99]

Wang RH, Wang XK, Zhao Y, Zhao XZ, Wu T, et al. 2025. Heterotrophic ammonia oxidation by Alcaligenes balances ROS generation and terminal electron transport. mLife

doi: 10.1002/mlf2.70035
[100]

Gu B, Ju X, Chang J, Ge Y, Vitousek PM. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America 112:8792−8797

doi: 10.1073/pnas.1510211112
[101]

Deng O, Wang S, Ran J, Huang S, Zhang X, et al. 2024. Managing urban development could halve nitrogen pollution in China. Nature Communications 15:401

doi: 10.1038/s41467-023-44685-y
[102]

Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613:77−84

doi: 10.1038/s41586-022-05481-8
[103]

Bai Z, Ma L, Jin S, Ma W, Velthof GL, et al. 2016. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environmental Science & Technology 50:13409−13418

doi: 10.1021/acs.est.6b03348
[104]

Bai Z, Ma W, Ma L, Velthof GL, Wei Z, et al. 2018. China's livestock transition: driving forces, impacts, and consequences. Science Advances 4:eaar8534

doi: 10.1126/sciadv.aar8534
[105]

Ma L, Ma WQ, Velthof GL, Wang FH, Qin W, et al. 2010. Modeling nutrient flows in the food chain of China. Journal of Environmental Quality 39:1279−1289

doi: 10.2134/jeq2009.0403
[106]

Beusen AHW, Van Beek LPH, Bouwman AF, Mogollón JM, Middelburg JJ. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geoscientific Model Development 8:4045−4067

doi: 10.5194/gmd-8-4045-2015
[107]

Van Damme M, Clarisse L, Whitburn S, Hadji-Lazaro J, Hurtmans D, et al. 2018. Industrial and agricultural ammonia point sources exposed. Nature 564:99−103

doi: 10.1038/s41586-018-0747-1
[108]

Liu L, Wen Z, Liu S, Zhang X, Liu X. 2024. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nature Geoscience 17:733−736

doi: 10.1038/s41561-024-01484-4
[109]

Cui Z, Zhang H, Chen X, Zhang C, Ma W, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363−566

doi: 10.1038/nature25785
[110]

Cai S, Zhao X, Pittelkow CM, Fan M, Zhang X, et al. 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615:673−679

doi: 10.1038/s41586-022-05678-x
[111]

Zhang W, Cao G, Li X, Zhang H, Wang C, et al. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature 537:671−674

doi: 10.1038/nature19368
[112]

Ren C, Zhou X, Wang C, Guo Y, Diao Y, et al. 2023. Ageing threatens sustainability of smallholder farming in China. Nature 616:96−103

doi: 10.1038/s41586-023-05738-w
[113]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293−296

doi: 10.1038/nature06592
[114]

van Vuuren DP, Doelman JC, Schmidt Tagomori I, Beusen AHW, Cornell SE, et al. 2025. Exploring pathways for world development within planetary boundaries. Nature 641:910−916

doi: 10.1038/s41586-025-08928-w
[115]

Gong C, Tian H, Liao H, Pan N, Pan S, et al. 2024. Global net climate effects of anthropogenic reactive nitrogen. Nature 632:557−563

doi: 10.1038/s41586-024-07714-4
[116]

Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:248−256

doi: 10.1038/s41586-020-2780-0
[117]

Xu X, Zhang X, Zou Y, Chen T, Zhan J, et al. 2025. Integrated carbon and nitrogen management for cost-effective environmental policies in China. Science 388:1098−1103

doi: 10.1126/science.ads4105
[118]

Ren C, Zhang X, Reis S, Wang S, Jin J, et al. 2023. Climate change unequally affects nitrogen use and losses in global croplands. Nature Food 4:294−304

doi: 10.1038/s43016-023-00730-z
[119]

Elrys AS, Uwiragiye Y, Zhang Y, Abdel-Fattah MK, Chen ZX, et al. 2023. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nature Food 4:109−121

doi: 10.1038/s43016-022-00657-x
[120]

Deng O, Ran J, Huang S, Duan J, Reis S, et al. 2024. Managing fragmented croplands for environmental and economic benefits in China. Nature Food 5:230−240

doi: 10.1038/s43016-024-00938-7
[121]

Van Drecht G, Bouwman AF, Harrison J, Knoop JM. 2009. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochemical Cycles 23:2009GB003458

doi: 10.1029/2009GB003458
[122]

Deng O, Wei J, Cui J, Huang S, Cheng L, et al. 2025. Food-driven transformation of nitrogen fluxes with urbanization in China. Resources, Conservation and Recycling 214:108034

doi: 10.1016/j.resconrec.2024.108034
[123]

Bai Z, Ma W, Zhao H, Guo M, Oenema O, et al. 2021. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nature Food 2:780−791

doi: 10.1038/s43016-021-00351-4
[124]

Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, et al. 2018. Options for keeping the food system within environmental limits. Nature 562:519−525

doi: 10.1038/s41586-018-0594-0
[125]

Kanter DR, Chodos O, Nordland O, Rutigliano M, Winiwarter W. 2020. Gaps and opportunities in nitrogen pollution policies around the world. Nature Sustainability 3:956−963

doi: 10.1038/s41893-020-0577-7
[126]

Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, et al. 2009. A safe operating space for humanity. Nature 461:472−475

doi: 10.1038/461472a
[127]

Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, et al. 2014. Nitrogen footprints: past, present and future. Environmental Research Letters 9:115003

doi: 10.1088/1748-9326/9/11/115003
[128]

Morseletto P. 2019. Confronting the nitrogen challenge: options for governance and target setting. Global Environmental Change 54:40−49

doi: 10.1016/j.gloenvcha.2018.10.010
[129]

UNEP. 2022. COP 15—Kunming Montreal Global Biodivesity Framework. www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222

[130]

Sutton MA, Howard CM, Kanter DR, Lassaletta L, Móring A, et al. 2021. The nitrogen decade: mobilizing global action on nitrogen to 2030 and beyond. One Earth 4:10−14

doi: 10.1016/j.oneear.2020.12.016