[1]

McNicol G, Jeliazovski J, François JJ, Kramer S, Ryals R. 2020. Climate change mitigation potential in sanitation via off-site composting of human waste. Nature Climate Change 10:545

doi: 10.1038/s41558-020-0782-4
[2]

Wang Y, Ying H, Stefanovski D, Shurson GC, Chen T, et al. 2025. Food waste used as a resource can reduce climate and resource burdens in agrifood systems. Nature Food 6:478−490

doi: 10.1038/s43016-025-01140-z
[3]

Ji Z, Zhang L, Liu Y, Li X, Li Z. 2023. Evaluation of composting parameters, technologies and maturity indexes for aerobic manure composting: a meta-analysis. Science of The Total Environment 886:14

doi: 10.1016/j.scitotenv.2023.163929
[4]

Aguilar-Paredes A, Valdés G, Araneda N, Valdebenito E, Hansen F, et al. 2023. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 13:24

doi: 10.3390/agronomy13020542
[5]

Nordahl SL, Preble CV, Kirchstetter TW, Scown CD. 2023. Greenhouse gas and air pollutant emissions from composting. Environmental Science & Technology 57:2235−2247

doi: 10.1021/acs.est.2c05846
[6]

Rosik J, Karczewski M, Stegenta-Dąbrowska S. 2024. Optimizing the early-stage of composting process emissions – artificial intelligence primary tests. Scientific Reports 14:27299

doi: 10.1038/s41598-024-79010-0
[7]

Ba S, Qu Q, Zhang K, Groot JCJ. 2020. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting. Biosystems Engineering 193:126−137

doi: 10.1016/j.biosystemseng.2020.02.015
[8]

Ye P, Fang L, Song D, Zhang M, Li R, et al. 2023. Insights into carbon loss reduction during aerobic composting of organic solid waste: a meta-analysis and comprehensive literature review. Science of The Total Environment 862:160787

doi: 10.1016/j.scitotenv.2022.160787
[9]

Zhang Z, Liu D, Qiao Y, Li S, Chen Y, et al. 2021. Mitigation of carbon and nitrogen losses during pig manure composting: a meta-analysis. Science of The Total Environment 783:147103

doi: 10.1016/j.scitotenv.2021.147103
[10]

Liu Y, Tang R, Li L, Zheng G, Wang J, et al. 2023. A global meta-analysis of greenhouse gas emissions and carbon and nitrogen losses during livestock manure composting: Influencing factors and mitigation strategies. Science of The Total Environment 885:163900

doi: 10.1016/j.scitotenv.2023.163900
[11]

Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, et al. 2022. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere 300:134514

doi: 10.1016/j.chemosphere.2022.134514
[12]

Guo S, Bol R, Li Z, Wu J, Lin H, et al. 2025. Patterns and drivers of soil autotrophic nitrification and associated N2O emissions. Soil Biology & Biochemistry 203:109730

doi: 10.1016/j.soilbio.2025.109730
[13]

Roothans N, Gabriëls M, Abeel T, Pabst M, van Loosdrecht MCM, et al. 2024. Aerobic denitrification as an N2O source from microbial communities. The ISME Journal 18:wrae116

doi: 10.1093/ismejo/wrae116
[14]

Maeda K, Toyoda S, Philippot L, Hattori S, Nakajima K, et al. 2017. Relative contribution of nirK and nirS bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost. Environmental Science & Technology 51:14083−14091

doi: 10.1021/acs.est.7b04017
[15]

Lin L, Xu F, Ge X, Li Y. 2018. Improving the sustainability of organic waste management practices in the food-energy-water nexus: a comparative review of anaerobic digestion and composting. Renewable & Sustainable Energy Reviews 89:151−167

doi: 10.1016/j.rser.2018.03.025
[16]

Cao Y, Wang X, Bai Z, Chadwick D, Misselbrook T, et al. 2019. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis. Journal of Cleaner Production 235:626−635

doi: 10.1016/j.jclepro.2019.06.288
[17]

Li X, Zhao Y, Xu A, Chang H, Lin G, et al. 2022. Conductive biochar promotes oxygen utilization to inhibit greenhouse gas emissions during electric field-assisted aerobic composting. Science of The Total Environment 842:156929

doi: 10.1016/j.scitotenv.2022.156929
[18]

Wu JX, Shangguan HY, Fu T, Chen JJ, Tang JH, et al. 2021. Alternating magnetic field mitigates N2O emission during the aerobic composting of chicken manure. Journal of Hazardous Materials 406:124329

doi: 10.1016/j.jhazmat.2020.124329
[19]

Robledo-Mahón T, Martín MA, Gutiérrez MC, Toledo M, González I, et al. 2019. Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. Environmental Research 177:108624

doi: 10.1016/j.envres.2019.108624
[20]

Harrison BP, Moo Z, Perez-Agredano E, Gao S, Zhang X, et al. 2024. Biochar-composting substantially reduces methane and air pollutant emissions from dairy manure. Environmental Research Letters 19:014081

doi: 10.1088/1748-9326/ad1ad2
[21]

Abban-Baidoo E, Manka’abusi D, Apuri L, Marschner B, Frimpong KA. 2024. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost. Scientific Reports 14:23781

doi: 10.1038/s41598-024-67884-z
[22]

Liu Y, Pan J, Wang J, Yang X, Zhang W, et al. 2024. Insight into the humification and carbon balance of biogas residual biochar amended co-composting of hog slurry and wheat straw. Environmental Science and Pollution Research

doi: 10.1007/s11356-024-33110-6
[23]

Nguyen MK, Lin C, Hoang HG, Bui XT, Ngo HH, et al. 2023. Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting. Science of The Total Environment 865:161128

doi: 10.1016/j.scitotenv.2022.161128
[24]

Wang J, Xiong Z, Kuzyakov Y. 2016. Biochar stability in soil: meta-analysis of decomposition and priming effects. Global Change Biology Bioenergy 8:512−523

doi: 10.1111/gcbb.12266
[25]

Godlewska P, Schmidt HP, Ok YS, Oleszczuk P. 2017. Biochar for composting improvement and contaminants reduction: A review. Bioresource Technology 246:193−202

doi: 10.1016/j.biortech.2017.07.095
[26]

Wang Z, Zhang M, Li J, Wang J, Sun G, et al. 2024. Effect of biochar with various pore characteristics on heavy metal passivation and microbiota development during pig manure composting. Journal of Environmental Management 352:120048

doi: 10.1016/j.jenvman.2024.120048
[27]

Sanchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, et al. 2018. Role of biochar as an additive in organic waste composting. Bioresource Technology 247:1155−1164

doi: 10.1016/j.biortech.2017.09.193
[28]

Chen H, Awasthi SK, Liu T, Duan Y, Ren X, et al. 2020. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials 389:121908

doi: 10.1016/j.jhazmat.2019.121908
[29]

Harrison BP, Gao S, Thao T, Gonzales ML, Williams KL, et al. 2024. Methane and nitrous oxide emissions during biochar-composting are driven by biochar application rate and aggregate formation. Global Change Biology Bioenergy 16:e13121

doi: 10.1111/gcbb.13121
[30]

Dang R, Cai Y, Li J, Kong Y, Jiang T, et al. 2024. Biochar reduces gaseous emissions during poultry manure composting: Evidence from the evolution of associated functional genes. Journal of Cleaner Production 452:142060

doi: 10.1016/j.jclepro.2024.142060
[31]

Nguyen MK, Lin C, Hoang HG, Sanderson P, Dang BT, et al. 2022. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 299:134488

doi: 10.1016/j.chemosphere.2022.134488
[32]

He X, Yin H, Han L, Cui R, Fang C, et al. 2019. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism. Bioresource Technology 271:375−382

doi: 10.1016/j.biortech.2018.09.104
[33]

Awasthi MK, Wang Q, Huang H, Li RH, Shen F, et al. 2016. Effect of biochar amendment on greenhouse gas emission and bio-availability of heavy metals during sewage sludge co-composting. Journal of Cleaner Production 135:829−835

doi: 10.1016/j.jclepro.2016.07.008
[34]

Ottani F, Parenti M, Santunione G, Moscatelli G, Kahn R, et al. 2023. Effects of different gasification biochar grain size on greenhouse gases and ammonia emissions in municipal aerated composting processes. Journal of Environmental Management 331:117257

doi: 10.1016/j.jenvman.2023.117257
[35]

Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH. 2024. Evaluation of gases emission and enzyme dynamics in sheep manure compost occupying with peach shell biochar. Environmental Pollution 351:124065

doi: 10.1016/j.envpol.2024.124065
[36]

Steiner C, Nathan M, Keith H, Das KC. 2011. Biochar as bulking agent for poultry litter composting. Carbon Management 2:227−30

doi: 10.4155/cmt.11.15
[37]

Zhang F, Wei Z, Wang J. 2021. Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Management 131:117−125

doi: 10.1016/j.wasman.2021.05.037
[38]

Yin Y, Yang C, Li M, Zheng Y, Ge C, et al. 2021. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Science of The Total Environment 798:149294

doi: 10.1016/j.scitotenv.2021.149294
[39]

Guo XX, Liu HT, Zhang J. 2020. The role of biochar in organic waste composting and soil improvement: a review. Waste Management 102:884−899

doi: 10.1016/j.wasman.2019.12.003
[40]

Vandecasteele B, Sinicco T, D'Hose T, Vanden Nest T, Mondini C. 2016. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management 168:200−209

doi: 10.1016/j.jenvman.2015.11.045
[41]

Awasthi MK, Wang M, Chen H, Wang Q, Zhao J, et al. 2017. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource Technology 224:428−438

doi: 10.1016/j.biortech.2016.11.014
[42]

Sánchez-García M, Alburquerque JA, Sánchez-Monedero MA, Roig A, Cayuela ML. 2015. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology 192:272−279

doi: 10.1016/j.biortech.2015.05.003
[43]

Li S, Song L, Jin Y, Liu S, Shen Q, et al. 2016. Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community. AMB Express 6:37

doi: 10.1186/s13568-016-0208-x
[44]

Bezabih Beyene B, Li J, Yuan J, Dong Y, Liu D, et al. 2022. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Global Change Biology 28:5453−5468

doi: 10.1111/gcb.16290
[45]

Tang B, Man J, Lehmann A, Rillig MC. 2023. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecology Letters 26:2087−2097

doi: 10.1111/ele.14320
[46]

Ainsworth EA. 2008. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology 14:1642−1650

doi: 10.1111/j.1365-2486.2008.01594.x
[47]

van Buuren S, Groothuis-Oudshoorn K. 2011. mice: multivariate imputation by chained equations in R. Journal of Statistical Software 45:1−67

doi: 10.18637/jss.v045.i03
[48]

Aurangzeib M, Zhang S, Yan S, Zhou J, Niu X, et al. 2024. Biochar application can improve most of the chemical properties of acidic soils: a global meta-analysis. ACS Agricultural Science & Technology 4:292−306

doi: 10.1021/acsagscitech.3c00564
[49]

Jeyasubramanian K, Thangagiri B, Sakthivel A, Dhaveethu Raja J, Seenivasan S, et al. 2021. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292:120243

doi: 10.1016/j.fuel.2021.120243
[50]

Zhou S, Kong F, Lu L, Wang P, Jiang Z. 2022. Biochar—An effective additive for improving quality and reducing ecological risk of compost: a global meta-analysis. Science of The Total Environment 806:151439

doi: 10.1016/j.scitotenv.2021.151439
[51]

Chowdhury MA, de Neergaard A, Jensen LS. 2014. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 97:16−25

doi: 10.1016/j.chemosphere.2013.10.030
[52]

Mao H, Lv Z, Sun H, Li R, Zhai B, et al. 2018. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresource Technology 258:195−202

doi: 10.1016/j.biortech.2018.02.082
[53]

Liu N, Zhou J, Han L, Ma S, Sun X, et al. 2017. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresource Technology 241:190−199

doi: 10.1016/j.biortech.2017.03.144
[54]

López-Cano I, Roig A, Cayuela ML, Alburquerque JA, Sánchez-Monedero MA. 2016. Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Management 49:553−559

doi: 10.1016/j.wasman.2015.12.031
[55]

Zhan Y, Wei Y, Zhang Z, Zhang A, Li Y, et al. 2021. Effects of different C/N ratios on the maturity and microbial quantity of composting with sesame meal and rice straw biochar. Biochar 3:557−564

doi: 10.1007/s42773-021-00110-5
[56]

Yan H, Niu Q, Zhu Q, Wang S, Meng Q, et al. 2021. Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO2 in composting process. Journal of Biotechnology 333:39−48

doi: 10.1016/j.jbiotec.2021.04.011
[57]

Kayes I, Halim MA, Thomas SC. 2025. Biochar mitigates methane emissions from organic mulching in urban soils: evidence from a long-term mesocosm experiment. Journal of Environmental Management 376:124525

doi: 10.1016/j.jenvman.2025.124525
[58]

Chen L, Liu L, Mao C, Qin S, Wang J, et al. 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications 9:3951

doi: 10.1038/s41467-018-06232-y
[59]

Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, et al. 2017. Composting technology in waste stabilization: on the methods, challenges and future prospects. Journal of Environmental Management 190:140−157

doi: 10.1016/j.jenvman.2016.12.051
[60]

Jindo K, Matsumoto K, García Izquierdo C, Sonoki T, Sanchez-Monedero MA. 2014. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples. Solid Earth 5:713−719

doi: 10.5194/se-5-713-2014
[61]

Kato H, Nakatani H, Ichikawa A. 1999. Effect of high electric conductivity (EC) on composting process of poultry manure. Research Bulletin of the Aichi-ken Agricultural Research Center 1999:311−116

[62]

Zhang H, Wang T, Zhang Y, Sun B, Pan W. 2020. Promotional effect of NH3 on mercury removal over biochar thorough chlorine functional group transformation. Journal of Cleaner Production 257:120598

doi: 10.1016/j.jclepro.2020.120598
[63]

Liu Q, Meki K, Zheng H, Yuan Y, Shao M, et al. 2023. Biochar application in remediating salt-affected soil to achieve carbon neutrality and abate climate change. Biochar 5:45

doi: 10.1007/s42773-023-00244-8