[1]

Xie W, Li B, Liu L, Li H, Yue M, et al. 2025. Advanced systems for enhanced CO2 electroreduction. Chemical Society Reviews 54:898−959

doi: 10.1039/D4CS00563E
[2]

Chu N, Li D, Zeng RJ, Jiang Y, Liang P. 2025. Microbial electrochemical wastewater refining. Engineering 46:245−256

doi: 10.1016/j.eng.2024.07.018
[3]

Van Den Berghe M, Walworth NG, Dalvie NC, Dupont CL, et al. 2024. Microbial Catalysis for CO2 Sequestration: A Geobiological Approach. Cold Spring Harbor Perspectives in Biology 16:a041673

doi: 10.1101/cshperspect.a041673
[4]

Gong A, Wang G, Qi X, He Y, Yang X, et al. 2025. Energy recovery and saving in municipal wastewater treatment engineering practices. Nature Sustainability 8:112−119

doi: 10.1038/s41893-024-01478-5
[5]

Fasihi M, Jouzi F, Tervasmäki P, Vainikka P, Breyer C. 2025. Global potential of sustainable single-cell protein based on variable renewable electricity. Nature Communications 16:1496

doi: 10.1038/s41467-025-56364-1
[6]

Zhu Q, Rooney CL, Shema H, Zeng C, Panetier JA, et al. 2024. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO reduction. Nature Catalysis 7:987−999

doi: 10.1038/s41929-024-01190-9
[7]

Zhang ZM, Wang T, Cai YC, Li XY, Ye JY, et al. 2024. Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media. Nature Catalysis 7:807−817

doi: 10.1038/s41929-024-01179-4
[8]

Zhang S, Shen Y, Zheng C, Xu Q, Sun Y, et al. 2024. Recent advances, challenges, and perspectives on carbon capture. Frontiers of Environmental Science & Engineering 18:75

doi: 10.1007/s11783-024-1835-0
[9]

Xu M, Zhou H, Zou R, Yang X, Su Y, et al. 2021. Beyond the farm: Making edible protein from CO2 via hybrid bioinorganic electrosynthesis. One Earth 4:868−878

doi: 10.1016/j.oneear.2021.05.007
[10]

Shi J, Lin Y, Li P, Mickel P, Sun C, et al. 2024. Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics. Nature Chemical Engineering 1:73−86

doi: 10.1038/s44286-023-00008-y
[11]

Luo S, Adam D, Giaveri S, Barthel S, Cestellos-Blanco S, et al. 2023. ATP production from electricity with a new-to-nature electrobiological module. Joule 7:1745−1758

doi: 10.1016/j.joule.2023.07.012
[12]

Chen P, Liu X, Gu C, Zhong P, Song N, et al. 2022. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612:546−554

doi: 10.1038/s41586-022-05499-y
[13]

Wang C, Dong W, Zhang P, Ma Y, Han Z, et al. 2024. Formate-Mediated Electroenzymatic Synthesis via Biological Cofactor NADH. Angewandte Chemie International Edition 63:e202408756

doi: 10.1002/anie.202408756
[14]

Hou J, Lu Y, Chen Q, Liao X, Wu X, et al. 2024. Multifunctional biomolecular corona-inspired nanoremediation of antibiotic residues. Proceedings of the National Academy of Sciences 121:e2409955121

doi: 10.1073/pnas.2409955121
[15]

Iwasaki K, Neuhauser C, Stokes C, Rayshubskiy A. 2025. The fruit fly, Drosophila melanogaster, as a microrobotics platform. Proceedings of the National Academy of Sciences 122:e2426180122

doi: 10.1073/pnas.2426180122
[16]

Zhang P, Cao M, Chetwynd AJ, Faserl K, Abdolahpur Monikh F, et al. 2024. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nature Protocols 19:3000−3047

doi: 10.1038/s41596-024-01009-8
[17]

Cong Y, Qiao R, Wang X, Ji Y, Yang J, et al. 2024. Protein corona-mediated inhibition of nanozyme activity: impact of protein shape. Journal of the American Chemical Society 146:10478−10488

doi: 10.1021/jacs.3c14046
[18]

Ma X, Liang X, Li Y, Feng Q, Cheng K, et al. 2023. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nature Communications 14:1606

doi: 10.1038/s41467-023-37225-1
[19]

Liang J, Xiao K, Wang X, Hou T, Zeng C, et al. 2024. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chemical Reviews 124:9081−9112

doi: 10.1021/acs.chemrev.3c00831
[20]

Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, Xiong Y. 2022. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems. Journal of the American Chemical Society 144:6434−6441

doi: 10.1021/jacs.2c00934
[21]

Ding Y, Bertram JR, Eckert C, Bommareddy RR, Patel R, et al. 2019. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids. Journal of the American Chemical Society 141:10272−10282

doi: 10.1021/jacs.9b02549
[22]

Kang W, Mu L, Hu X. 2024. Marine colloids boost nitrogen fixation in trichodesmium erythraeum by photoelectrophy. Environmental Science & Technology 58:9236−9249

doi: 10.1021/acs.est.4c01849
[23]

Wang B, Xiao K, Jiang Z, Wang J, Yu JC, et al. 2019. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy & Environmental Science 12:2185−91

doi: 10.1039/C9EE00705A
[24]

Wang B, Zhang Y, Minteer SD. 2023. Renewable electron-driven bioinorganic nitrogen fixation: a superior route toward green ammonia? Energy & Environmental Science 16:404−420

doi: 10.1039/D2EE03132A
[25]

Huang S, Chen K, Chen X, Liao H, Zeng RJ, et al. 2023. Sunlight Significantly Enhances Soil Denitrification via an Interfacial Biophotoelectrochemical Pathway. Environmental Science & Technology 57:7733−7742

doi: 10.1021/acs.est.3c00236
[26]

Chen M, Cai Q, Chen X, Huang S, Feng Q, et al. 2022. Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity. Environmental Science & Technology 56:5161−5169

doi: 10.1021/acs.est.1c08710
[27]

Huang S, Chen M, Diao Y, Feng Q, Zeng RJ, et al. 2022. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification. Environmental Science & Technology 56:4632−4641

doi: 10.1021/acs.est.1c07556
[28]

Guo M, Liu G, Qiao S, Quan X. 2024. Bacteria-photocatalyst biohybrid system for sustainable ammonium production. Engineering 50:52−59

doi: 10.1016/j.eng.2024.08.004
[29]

Zhong C, Ren Y, Guo YY, Lu A, Liu J. 2024. Photoelectron-Promoted sulfate reduction for heavy metal removal without organic carbon addition. Environmental Science & Technology 58:21680−21691

doi: 10.1021/acs.est.4c08073
[30]

Gralnick JA, Vali H, Lies DP, Newman DK. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proceedings of the National Academy of Sciences 103:4669−74

doi: 10.1073/pnas.0505959103
[31]

Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Reviews Microbiology 8:706−716

doi: 10.1038/nrmicro2422
[32]

Kundu BB, Krishnan J, Szubin R, Patel A, Palsson BO, et al. 2025. Extracellular respiration is a latent energy metabolism in Escherichia coli. Cell 188:2907−2924

doi: 10.1016/j.cell.2025.03.016
[33]

Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, et al. 2020. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 182:919−932.e19

doi: 10.1016/j.cell.2020.07.006
[34]

Baquero DP, Cvirkaite-Krupovic V, Hu SS, Fields JL, Liu X, et al. 2023. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 186:2853−2864.e8

doi: 10.1016/j.cell.2023.05.012
[35]

Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, et al. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:361−369.e10

doi: 10.1016/j.cell.2019.03.029
[36]

Logan BE, Rossi R, Ragab Aa, Saikaly PE. 2019. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology 17:307−19

doi: 10.1038/s41579-019-0173-x
[37]

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, et al. 2006. Microbial fuel cells: methodology and technology. Environmental Science & Technology 40:5181−5192

doi: 10.1021/es0605016
[38]

Cao X, Huang X, Liang P, Xiao K, Zhou Y, et al. 2009. A new method for water desalination using microbial desalination cells. Environmental Science & Technology 43:7148−7152

doi: 10.1021/es901950j
[39]

Liu H, Grot S, Logan BE. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology 39:4317−4320

doi: 10.1021/es050244p
[40]

Cao B, Zhao Z, Peng L, Shiu HY, Ding M, et al. 2021. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 373:1336−1340

doi: 10.1126/science.abf3427
[41]

Lu A, Li Y, Jin S, Wang X, Wu XL, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications 3:768

doi: 10.1038/ncomms1768
[42]

Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences 109:10042−46

doi: 10.1073/pnas.1117592109
[43]

Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103−10

doi: 10.1128/mBio.00103-10
[44]

Lu A, Liu J, Xu M, Zhou S, Liu J, et al. 2025. Novel energy utilization mechanisms of microorganisms in the hydrosphere. Fundamental Research 5(4):1584−1596

doi: 10.1016/j.fmre.2023.12.014
[45]

Liu X, Huang L, Rensing C, Ye J, Nealson KH, Zhou S. 2021. Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions. Science Advances 7:eabh1852

doi: 10.1126/sciadv.abh1852
[46]

Ter Heijne A, Harnisch F. 2024. Microbial electrodes. Nature Reviews Methods Primers 4:60

doi: 10.1038/s43586-024-00332-4
[47]

Guan X, Xie Y, Liu C. 2024. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material–microbe hybrids. Nature Catalysis 7:475−482

doi: 10.1038/s41929-024-01151-2
[48]

Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, et al. 2023. Bioelectrocatalytic Synthesis: Concepts and Applications. Angewandte Chemie International Edition 62:e202307780

doi: 10.1002/anie.202307780
[49]

Chu N, Hao W, Wu Q, Liang Q, Jiang Y, et al. 2022. Microbial electrosynthesis for producing medium chain fatty acids. Engineering 16:141−153

doi: 10.1016/j.eng.2021.03.025
[50]

Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology 20:5−19

doi: 10.1038/s41579-021-00597-6
[51]

Chu N, Jiang Y, Liang Q, Liu P, Wang D, et al. 2023. Electricity-driven microbial metabolism of carbon and nitrogen: a waste-to-resource solution. Environmental Science & Technology 57:4379−4395

doi: 10.1021/acs.est.2c07588
[52]

Cestellos-Blanco S, Zhang H, Kim JM, Shen YX, Yang P. 2020. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis 3:245−255

doi: 10.1038/s41929-020-0428-y
[53]

Song W, Zhang X, Li W, Li B, Liu B. 2025. Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion. Chem 11:102351

doi: 10.1016/j.chempr.2024.10.018
[54]

Zhang J, Li F, Liu D, Liu Q, Song H. 2024. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chemical Society Reviews 53:1375−1446

doi: 10.1039/D3CS00537B
[55]

Liu Z, Wang K, Chen Y, Tan T, Nielsen J. 2020. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis 3:274−288

doi: 10.1038/s41929-019-0421-5
[56]

Wood JC, Grové J, Marcellin E, Heffernan JK, Hu S, et al. 2021. Strategies to improve viability of a circular carbon bioeconomy - a techno-economic review of microbial electrosynthesis and gas fermentation. Water Research 201:117306

doi: 10.1016/j.watres.2021.117306
[57]

Jiang Y, May HD, Lu L, Liang P, Huang X, et al. 2019. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Research 149:42−55

doi: 10.1016/j.watres.2018.10.092
[58]

Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. 2024. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends in Biotechnology 42:1035−1047

doi: 10.1016/j.tibtech.2024.02.004
[59]

Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A. 2019. Making quantitative sense of electromicrobial production. Nature Catalysis 2:437−447

doi: 10.1038/s41929-019-0272-0
[60]

Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, et al. 2015. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environmental Science & Technology 49:13566−13574

doi: 10.1021/acs.est.5b03821
[61]

Xia R, Cheng J, Chen Z, Zhou X, Zhang Z, et al. 2023. Tailoring interfacial microbiome and charge dynamics via a rationally designed atomic-nanoparticle bridge for bio-electrochemical CO2-fixation. Energy & Environmental Science 16:1176−1186

doi: 10.1039/D2EE03886B
[62]

Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, et al. 2023. Revealing Co-N4@Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO2-Conversion with Methanosarcina Barkeri. Advanced Materials 35:2304920

doi: 10.1002/adma.202304920
[63]

Quek G, Vázquez RJ, McCuskey SR, Lopez-Garcia F, Bazan GC. 2023. An n-Type Conjugated Oligoelectrolyte Mimics Transmembrane Electron Transport Proteins for Enhanced Microbial Electrosynthesis. Angewandte Chemie International Edition 62:e202305189

doi: 10.1002/anie.202305189
[64]

LaBelle EV, Marshall CW, May HD. 2020. Microbiome for the electrosynthesis of chemicals from carbon dioxide. Accounts of Chemical Research 53:62−71

doi: 10.1021/acs.accounts.9b00522
[65]

Hu L, Yang Y, Fu Q, Zhang L, Zhu X, et al. 2023. In situ probing the mass transport property inside an imitated three-dimensional porous bioelectrode. Environmental Science & Technology 57:6159−6168

doi: 10.1021/acs.est.2c09786
[66]

Li F, Zhang B, Long X, Yu H, Shi S, et al. 2025. Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate. Nature Communications 16:2882

doi: 10.1038/s41467-025-57497-z
[67]

Zhang L, Zhang Y, Liu Y, Wang S, Lee CK, et al. 2024. High power density redox-mediated Shewanella microbial flow fuel cells. Nature Communications 15:8302

doi: 10.1038/s41467-024-52498-w
[68]

Xie Y, Ersan S, Guan X, Wang J, Sha J, et al. 2023. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials-biology hybrids. Proceedings of the National Academy of Sciences 120:e2308373120

doi: 10.1073/pnas.2308373120
[69]

Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG. 2016. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210−1213

doi: 10.1126/science.aaf5039
[70]

Li B, Jin P, Zhang Y. 2025. Powering up protein: How hydrogel-coated electrodes enhance biohybrid production. Water Research 278:123341

doi: 10.1016/j.watres.2025.123341
[71]

Rad R, Gehring T, Pellumbi K, Siegmund D, Nettmann E, et al. 2023. A hybrid bioelectrochemical system coupling a zero-gap cell and a methanogenic reactor for carbon dioxide reduction using a wastewater-derived catholyte. Cell Reports Physical Science 4:101526

doi: 10.1016/j.xcrp.2023.101526
[72]

Tian Y, Wu J, Liang D, Li J, Liu G, et al. 2023. Insights into the electron transfer behaviors of a biocathode regulated by cathode potentials in microbial electrosynthesis cells for biogas upgrading. Environmental Science & Technology 57:6733−42

doi: 10.1021/acs.est.2c09871
[73]

Rodrigues RM, Guan X, Iñiguez JA, Estabrook DA, Chapman JO, et al. 2019. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nature Catalysis 2:407−414

doi: 10.1038/s41929-019-0264-0
[74]

Angenent LT, Casini I, Schröder U, Harnisch F, Molitor B. 2024. Electrical-energy storage into chemical-energy carriers by combining or integrating electrochemistry and biology. Energy & Environmental Science 17:3682−3699

doi: 10.1039/D3EE01091K
[75]

Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology 43:3953−3958

doi: 10.1021/es803531g
[76]

Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, et al. 2013. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy 38:3497−502

doi: 10.1016/j.ijhydene.2012.12.107
[77]

Deutzmann JS, Sahin M, Spormann AM. 2015. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6:e00496-15

doi: 10.1128/mBio.00496-15
[78]

Deutzmann JS, Spormann AM. 2016. Enhanced microbial electrosynthesis by using defined co-cultures. The ISME Journal 11:704−714

doi: 10.1038/ismej.2016.149
[79]

Le QAT, Kim HG, Kim YH. 2018. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme and Microbial Technology 116:1−5

doi: 10.1016/j.enzmictec.2018.05.005
[80]

Li Y, Xia D, Xie Y, Dong R, Cao M, et al. 2025. Direct CO2 transformation to malate via bioelectrosynthesis upon engineered Shewanella oneidensis. Journal of the American Chemical Society 147:15397−15407

doi: 10.1021/jacs.5c01494
[81]

Fang W, Guo W, Lu R, Yan Y, Liu X, et al. 2024. Durable CO2 conversion in the proton-exchange membrane system. Nature 626:86−91

doi: 10.1038/s41586-023-06917-5
[82]

Yang Y, Louisia S, Yu S, Jin J, Roh I, et al. 2023. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614:262−269

doi: 10.1038/s41586-022-05540-0
[83]

Jin J, Wicks J, Min Q, Li J, Hu Y, et al. 2023. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617:724−729

doi: 10.1038/s41586-023-05918-8
[84]

Huang JE, Li F, Ozden A, Sedighian Rasouli A, García de Arquer FP, et al. 2021. CO2 electrolysis to multicarbon products in strong acid. Science 372:1074−1078

doi: 10.1126/science.abg6582
[85]

Guerra OJ, Almajed HM, Smith WA, Somoza-Tornos A, Hodge BMS. 2023. Barriers and opportunities for the deployment of CO2 electrolysis in net-zero emissions energy systems. Joule 7:1111−1133

doi: 10.1016/j.joule.2023.05.002
[86]

O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, et al. 2024. CO2 electrolyzers. Chemical Reviews 124:3648−3693

doi: 10.1021/acs.chemrev.3c00206
[87]

Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, et al. 2012. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

doi: 10.1126/science.1217643
[88]

Jiang Y, Chu N, Zhang W, Ma J, Zhang F, et al. 2019. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research 159:87−94

doi: 10.1016/j.watres.2019.04.053
[89]

Ye C, Dattila F, Chen X, López N, Koper MTM. 2023. Influence of cations on HCOOH and CO formation during CO2 reduction on a PdMLPt(111) electrode. Journal of the American Chemical Society 145:19601−19610

doi: 10.1021/jacs.3c03786
[90]

Liu W, Zhai P, Li A, Wei B, Si K, et al. 2022. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nature Communications 13:1877

doi: 10.1038/s41467-022-29428-9
[91]

Lees EW, Liu A, Bui JC, Ren S, Weber AZ, et al. 2022. Electrolytic methane production from reactive carbon solutions. ACS Energy Letters 7:1712−1718

doi: 10.1021/acsenergylett.2c00283
[92]

Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, et al. 2024. Effects of Iron Species on Low Temperature CO2 Electrolyzers. Angewandte Chemie International Edition 63:e202306503

doi: 10.1002/anie.202306503
[93]

Zhang P, Chen K, Xu B, Li J, Hu C, et al. 2022. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 8:3363−3381

doi: 10.1016/j.chempr.2022.09.005
[94]

Ji Z, Zhang H, Liu H, Yaghi OM, Yang P. 2018. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences 115:10582−10587

doi: 10.1073/pnas.1808829115
[95]

Haas T, Krause R, Weber R, Demler M, Schmid G. 2018. Technical photosynthesis involving CO2 electrolysis and fermentation. Nature Catalysis 1:32−39

doi: 10.1038/s41929-017-0005-1
[96]

Pu Y, Wang Y, Wu G, Wu X, Lu Y, et al. 2024. Tandem Acidic CO2 Electrolysis Coupled with Syngas Fermentation: A Two-Stage Process for Producing Medium-Chain Fatty Acids. Environmental Science & Technology 58:7445−7456

doi: 10.1021/acs.est.3c09291
[97]

Guo S, Li C, Su Y, Huang X, Zhang C, et al. 2025. Scalable Electro-Biosynthesis of Ectoine from Greenhouse Gases. Angewandte Chemie International Edition 64:e202415445

doi: 10.1002/anie.202415445
[98]

Molitor B, Mishra A, Angenent LT. 2019. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy & Environmental Science 12:3515−3521

doi: 10.1039/C9EE02381J
[99]

Hann EC, Overa S, Harland-Dunaway M, Narvaez AF, Le DN, et al. 2022. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food 3:461−471

doi: 10.1038/s43016-022-00530-x
[100]

Sheng H, Liu C. 2022. Spatial decoupling boosts CO2 electro-biofixation. Nature Catalysis 5:357−58

doi: 10.1038/s41929-022-00792-5
[101]

Feng Y, Park Y, Hao S, Fang Z, Terlier T, et al. 2024. Three-chamber electrochemical reactor for selective lithium extraction from brine. Proceedings of the National Academy of Sciences 121:e2410033121

doi: 10.1073/pnas.2410033121
[102]

Chen FY, Elgazzar A, Pecaut S, Qiu C, Feng Y, et al. 2024. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor. Nature Catalysis 7:1032−1043

doi: 10.1038/s41929-024-01200-w
[103]

Zhang SK, Feng Y, Elgazzar A, Xia Y, Qiu C, et al. 2023. Interfacial electrochemical-chemical reaction coupling for efficient olefin oxidation to glycols. Joule 7:1887−1901

doi: 10.1016/j.joule.2023.06.022
[104]

Zhang X, Fang Z, Zhu P, Xia Y, Wang H. 2025. Electrochemical regeneration of high-purity CO2 from (bi)carbonates in a porous solid electrolyte reactor for efficient carbon capture. Nature Energy 10:55−65

doi: 10.1038/s41560-024-01654-z
[105]

Zhu P, Wu ZY, Elgazzar A, Dong C, Wi TU, et al. 2023. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618:959−966

doi: 10.1038/s41586-023-06060-1
[106]

Zhang G, Tan B, Mok DH, Liu H, Ni B, et al. 2024. Electrifying HCOOH synthesis from CO2 building blocks over Cu-Bi nanorod arrays. Proceedings of the National Academy of Sciences 121:e2400898121

doi: 10.1073/pnas.2400898121
[107]

Yuan CY, Feng L, Qin X, Liu JX, Li X, et al. 2024. Constructing Metal(II)-sulfate site catalysts toward low overpotential carbon dioxide electroreduction to fuel chemicals. Angewandte Chemie International Edition 63:e202405255

doi: 10.1002/anie.202405255
[108]

Liu G, Zhong Y, Liu Z, Wang G, Gao F, et al. 2024. Solar-driven sugar production directly from CO2 via a customizable electrocatalytic-biocatalytic flow system. Nature Communications 15:2636

doi: 10.1038/s41467-024-46954-w
[109]

Zhu J, Li J, Lu R, Yu R, Zhao S, et al. 2023. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications 14:4670

doi: 10.1038/s41467-023-40342-6
[110]

Li L, Liu Z, Yu X, Zhong M. 2023. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angewandte Chemie International Edition 62:e202300226

doi: 10.1002/anie.202300226
[111]

Lin L, He X, Zhang XG, Ma W, Zhang B, et al. 2023. A nanocomposite of bismuth clusters and Bi2O2CO3 Sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angewandte Chemie International Edition 62:e202214959

doi: 10.1002/anie.202214959
[112]

Xia C, Zhu P, Jiang Q, Pan Y, Liang W, et al. 2019. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy 4:776−785

doi: 10.1038/s41560-019-0451-x
[113]

Fan L, Xia C, Zhu P, Lu Y, Wang H. 2020. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications 11:3633

doi: 10.1038/s41467-020-17403-1
[114]

Fan L, Zhu Z, Zhao S, Panda S, Zhao Y, et al. 2024. Blended nexus molecules promote CO2 to l-tyrosine conversion. Science Advances 10:eado1352

doi: 10.1126/sciadv.ado1352
[115]

Miao RK, Xu Y, Ozden A, Robb A, O'Brien CP, et al. 2021. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5:2742−2753

doi: 10.1016/j.joule.2021.08.013
[116]

Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, et al. 2024. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. Journal of the American Chemical Society 146:1144−1152

doi: 10.1021/jacs.3c12423
[117]

Wi TU, Xie Y, Levell ZH, Feng D, Kim JYT, et al. 2024. Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis. Nature Synthesis 3:1392−1403

doi: 10.1038/s44160-024-00621-6
[118]

Miao C, Xu S, An Z, Pan X, Li Y, et al. 2025. Self-optimized reconstruction of metal-organic frameworks introduces cation vacancies for selective electrosynthesis of hydrogen peroxide. Angewandte Chemie International Edition 64:e202501930

doi: 10.1002/anie.202501930
[119]

Fan L, Zhao Y, Chen L, Chen J, Chen J, et al. 2023. Selective production of ethylene glycol at high rate via cascade catalysis. Nature Catalysis 6:585−595

doi: 10.1038/s41929-023-00977-6
[120]

Fan L, Bai X, Xia C, Zhang X, Zhao X, et al. 2022. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications 13:2668

doi: 10.1038/s41467-022-30251-5
[121]

Zhang X, Zhao X, Zhu P, Adler Z, Wu ZY, et al. 2022. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications 13:2880

doi: 10.1038/s41467-022-30337-0
[122]

Hu X, Mei G, Chen X, Liu J, Xia BY, You B. 2023. Simultaneous generation of H2O2 and formate by co-electrolysis of water and CO2 over bifunctional Zn/SnO2 nanodots. Angewandte Chemie International Edition 62:e202304050

doi: 10.1002/anie.202304050
[123]

Xia C, Xia Y, Zhu P, Fan L, Wang H. 2019. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366:226−231

doi: 10.1126/science.aay1844
[124]

Zhao E, Zhang Y, Zhan J, Xia G, Yu G, et al. 2025. Optimization and scaling-up of porous solid electrolyte electrochemical reactors for hydrogen peroxide electrosynthesis. Nature Communications 16:3212

doi: 10.1038/s41467-025-58385-2
[125]

Sun Y, Dai L, Sui NLD, Li Y, Tian M, et al. 2024. Direct parallel electrosynthesis of high-value chemicals from atmospheric components on symmetry-breaking indium sites. Proceedings of the National Academy of Sciences 121:e2409620121

doi: 10.1073/pnas.2409620121
[126]

Liu YC, Huang JR, Zhu HL, Qiu XF, Yu C, et al. 2025. Electrosynthesis of pure urea from pretreated flue gas in a proton-limited environment established in a porous solid-state electrolyte electrolyser. Nature Nanotechnology 20:907−913

doi: 10.1038/s41565-025-01914-3
[127]

Elgazzar A, Wang H. 2025. Beyond molecular transformations in electrochemical porous solid electrolyte reactors. Nature Chemical Engineering 2:3−7

doi: 10.1038/s44286-024-00160-z
[128]

Zhu P, Wang H. 2021. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nature Catalysis 4:943−951

doi: 10.1038/s41929-021-00694-y
[129]

Li W, Zhai Y, Xia Q, Zhang X. 2024. An Emerging Solid-State Electrolyte Reactor to Drive the Future of Electrochemical Synthesis. Advanced Energy Materials 14:2403841

doi: 10.1002/aenm.202403841
[130]

Chu N, Jiang Y, Zeng RJ, Li D, Liang P. 2024. Solid electrolytes for low-temperature carbon dioxide valorization: a review. Environmental Science & Technology 58:10881−10896

doi: 10.1021/acs.est.4c02066
[131]

Jiang Y, Wu G, Pu Y, Wang Y, Chu N, et al. 2024. Flow-electrode capacitive separation of organic acid products and recovery of alkali cations after acidic CO2 electrolysis. Proceedings of the National Academy of Sciences 121:e2408205121

doi: 10.1073/pnas.2408205121
[132]

Lim J, Choi SY, Lee JW, Lee SY, Lee H. 2023. Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2. Proceedings of the National Academy of Sciences 120:e2221438120

doi: 10.1073/pnas.2221438120
[133]

Chu N, Jiang Y, Wang D, Li D, Zeng RJ. 2023. Super-fast charging biohybrid batteries through a power-to-formate-to-bioelectricity process by combining microbial electrochemistry and CO2 electrolysis. Angewandte Chemie International Edition 62:e202312147

doi: 10.1002/anie.202312147
[134]

Chu N, Zeng RJ, Jiang Y, Liang P. 2025. Conductivity-based rapid characterization of porous solid-state electrolyte reactors. Environmental Science & Technology Letters 12(8):963−969

doi: 10.1021/acs.estlett.5c00510
[135]

Kim JYT, Zhu P, Chen FY, Wu ZY, Cullen DA, et al. 2022. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nature Catalysis 5:288−299

doi: 10.1038/s41929-022-00763-w
[136]

Lin S, Wang J, Chen J, Lin P, Wang H, et al. 2025. Electrochemical pilot H2O2 production by solid-state electrolyte reactor: insights from a hybrid catalyst for 2-electron oxygen reduction reaction. Angewandte Chemie International Edition 137:e202502144

doi: 10.1002/anie.202502144
[137]

Wu B, Wang B, Cai B, Wu C, Tjiu WW, et al. 2024. A solid-state electrolyte facilitates acidic CO2 electrolysis without alkali metal cations by regulating proton transport. Journal of the American Chemical Society 146:29801−29809

doi: 10.1021/jacs.4c11564
[138]

Chu N, Wu X, Zhao Z, Zheng X, Lu Y, et al. 2024. Biohybrid CO2 electrolysis under external mode: using pure formic acid extracted from CO2 electroreduction for diverse microbial conversion. Fundamental Research In Press

doi: 10.1016/j.fmre.2024.02.008
[139]

Cherniack LH, Hansen KU, Li Z, Taylor AK, Neyerlin KC, et al. 2025. An interfacial engineering approach toward operation of a porous solid electrolyte CO2 electrolyzer. ACS Energy Letters 10:1508−1516

doi: 10.1021/acsenergylett.5c00079
[140]

Zheng T, Zhang M, Wu L, Guo S, Liu X, et al. 2022. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis 5:388−396

doi: 10.1038/s41929-022-00775-6
[141]

Garg S, Xie Z, Chen JG. 2024. Tandem reactors and reactions for CO2 conversion. Nature Chemical Engineering 1:139−148

doi: 10.1038/s44286-023-00020-2
[142]

Bai X, Chen C, Zhao X, Zhang Y, Zheng Y, et al. 2024. Accelerating the reaction kinetics of CO2 reduction to multi-carbon products by synergistic effect between cation and aprotic solvent on copper electrodes. Angewandte Chemie International Edition 63:e202317512

doi: 10.1002/anie.202317512
[143]

Teng ZJ, Qin QL, Zhang W, Li J, Fu HH, et al. 2021. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome 9:207

doi: 10.1186/s40168-021-01153-3
[144]

Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell JC, et al. 2016. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environmental Microbiology 18:2754−2766

doi: 10.1111/1462-2920.13354
[145]

Zeng M, Fang W, Cen Y, Zhang X, Hu Y, et al. 2024. Reaction environment regulation for electrocatalytic CO2 reduction in acids. Angewandte Chemie International Edition 63:e202404574

doi: 10.1002/anie.202404574
[146]

Ma M, Seger B. 2024. Rational design of local reaction environment for electrocatalytic conversion of CO2 into multicarbon products. Angewandte Chemie International Edition 63:e202401185

doi: 10.1002/anie.202401185
[147]

Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, et al. 2017. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications 8:13924

doi: 10.1038/ncomms13924
[148]

Dranseike D, Cui Y, Ling AS, Donat F, Bernhard S, et al. 2025. Dual carbon sequestration with photosynthetic living materials. Nature Communications 16:3832

doi: 10.1038/s41467-025-58761-y
[149]

Tu W, Xu J, Thompson IP, Huang WE. 2023. Engineering artificial photosynthesis based on rhodopsin for CO2 fixation. Nature Communications 14:8012

doi: 10.1038/s41467-023-43524-4
[150]

Zheng Y, Wang H, Liu Y, Liu P, Zhu B, et al. 2024. Electrochemically coupled CH4 and CO2 consumption driven by microbial processes. Nature Communications 15:3097

doi: 10.1038/s41467-024-47445-8
[151]

Kong W, Huang L, Quan X, Zhao Z, Li Puma G. 2021. Efficient production of acetate from inorganic carbon (HCO3) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes. Applied Catalysis B: Environmental 284:119696

doi: 10.1016/j.apcatb.2020.119696
[152]

Liu C, Gallagher JJ, Sakimoto KK, Nichols EM, Chang CJ, et al. 2015. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Letters 15:3634−3639

doi: 10.1021/acs.nanolett.5b01254
[153]

Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, et al. 2015. Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences 112:11461−11466

doi: 10.1073/pnas.1508075112
[154]

Wang Q, Kalathil S, Pornrungroj C, Sahm CD, Reisner E. 2022. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nature Catalysis 5:633−641

doi: 10.1038/s41929-022-00817-z
[155]

Ding R, Wu Y, Wang Z, Tian X, Chen L, Zhao F. 2024. Lumichrome metabolism mediates semiconductor-driven solar energy conversion in non-phototrophic Shewanella. Cell Reports Physical Science 5:102017

doi: 10.1016/j.xcrp.2024.102017
[156]

Jin S, Jeon Y, Jeon MS, Shin J, Song Y, et al. 2021. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences 118:e2020552118

doi: 10.1073/pnas.2020552118
[157]

Wu H, Feng X, Wang L, Chen C, Wu P, et al. 2024. Solar energy for value-added chemical production by light-powered microbial factories. CCS Chemistry 6:1776−1788

doi: 10.31635/ccschem.023.202303011
[158]

Li X, Sun H, Mao X, Lao Y, Chen F. 2020. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. ACS Sustainable Chemistry & Engineering 8:7600−7608

doi: 10.1021/acssuschemeng.0c00315
[159]

Guo J, Suástegui M, Sakimoto KK, Moody VM, Xiao G, et al. 2018. Light-driven fine chemical production in yeast biohybrids. Science 362:813−816

doi: 10.1126/science.aat9777
[160]

Lin Y, Shi J, Feng W, Yue J, Luo Y, et al. 2023. Periplasmic biomineralization for semi-artificial photosynthesis. Science Advances 9:eadg5858

doi: 10.1126/sciadv.adg5858
[161]

Honda Y, Hagiwara H, Ida S, Ishihara T. 2016. Application to photocatalytic H2 Production of a whole-cell reaction by recombinant escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes. Angewandte Chemie International Edition 55:8045−8048

doi: 10.1002/anie.201600177
[162]

Luo B, Wang YZ, Li D, Shen H, Xu LX, et al. 2021. A periplasmic photosensitized biohybrid system for solar hydrogen production. Advanced Energy Materials 11:2100256

doi: 10.1002/aenm.202100256
[163]

Ye J, Wang C, Gao C, Fu T, Yang C, et al. 2022. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface. Nature Communications 13:6612

doi: 10.1038/s41467-022-34423-1
[164]

Ye J, Yu J, Zhang Y, Chen M, Liu X, et al. 2019. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental 257:117916

doi: 10.1016/j.apcatb.2019.117916
[165]

Ye J, Ren G, Kang L, Zhang Y, Liu X, et al. 2020. Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion. iScience 23:101287

doi: 10.1016/j.isci.2020.101287
[166]

Hu A, Ye J, Ren G, Qi Y, Chen Y, Zhou S. 2022. Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield. Angewandte Chemie International Edition 61:e202206508

doi: 10.1002/anie.202206508
[167]

Kalathil S, Rahaman M, Lam E, Augustin TL, Greer HF, et al. 2024. Solar-driven methanogenesis through microbial ecosystem engineering on carbon nitride. Angewandte Chemie International Edition 63:e202409192

doi: 10.1002/anie.202409192
[168]

Gu W, Hu J, Li L, Hong M, Yang C, et al. 2024. Natural AIEgens as ultraviolet sunscreens and photosynergists for solar fuel production. Environmental Science & Technology 58:20434−20443

doi: 10.1021/acs.est.4c05605
[169]

Gu W, Hu J, Li L, Hong M, Zhang D, et al. 2025. Liquid metal nanobiohybrids for high-performance solar-driven methanogenesis via multi-interface engineering. Angewandte Chemie International Edition 64:e202423336

doi: 10.1002/anie.202423336
[170]

Huang L, Liu X, Zhang Z, Ye J, Rensing C, et al. 2022. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. The ISME Journal 16:370−377

doi: 10.1038/s41396-021-01078-7
[171]

Sakimoto KK, Wong AB, Yang P. 2016. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74−77

doi: 10.1126/science.aad3317
[172]

Kornienko N, Sakimoto KK, Herlihy DM, Nguyen SC, Alivisatos AP, et al. 2016. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences 113:11750−11755

doi: 10.1073/pnas.1610554113
[173]

Wen N, Jiang Q, Cui J, Zhu H, Ji B, et al. 2022. Intracellular InP quantum dots facilitate the conversion of carbon dioxide to value-added chemicals in non-photosynthetic bacteria. Nano Today 47:101681

doi: 10.1016/j.nantod.2022.101681
[174]

Shi Y, Zhang K, Chen J, Zhang B, Guan X, et al. 2024. Long-term autotrophic growth and solar-to-chemical conversion in Shewanella Oneidensis MR-1 through light-driven electron transfer. Angewandte Chemie International Edition 63:e202412072

doi: 10.1002/anie.202412072
[175]

Wang X, Zhang J, Li K, An B, Wang Y, et al. 2022. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. Science Advances 8:eabm7665

doi: 10.1126/sciadv.abm7665
[176]

Xu M, Tremblay PL, Jiang L, Zhang T. 2019. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chemistry 21:2392−2400

doi: 10.1039/C8GC03695K
[177]

Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, et al. 2023. Photosynthetic polymer dots–bacteria biohybrid system based on transmembrane electron transport for fixing CO2 into poly-3-hydroxybutyrate. ACS Applied Materials & Interfaces 15:2183−2191

doi: 10.1021/acsami.2c18831
[178]

Guan X, Erşan S, Hu X, Atallah TL, Xie Y, et al. 2022. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids. Nature Catalysis 5:1019−1029

doi: 10.1038/s41929-022-00867-3
[179]

Zeng Y, Zhou X, Qi R, Dai N, Fu X, et al. 2021. Photoactive Conjugated Polymer-Based Hybrid Biosystems for Enhancing Cyanobacterial Photosynthesis and Regulating Redox State of Protein. Advanced Functional Materials 31:2007814

doi: 10.1002/adfm.202007814
[180]

Ye J, Zhuang M, Hong M, Zhang D, Ren G, et al. 2024. Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle. Nature Communications 15:5682

doi: 10.1038/s41467-024-50108-3
[181]

Chen S, Chen J, Zhang L, Huang S, Liu X, et al. 2023. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. The ISME Journal 17:712−719

doi: 10.1038/s41396-023-01383-3
[182]

Wang C, Yu J, Ren G, Hu A, Liu X, et al. 2022. Self-replicating biophotoelectrochemistry system for sustainable CO methanation. Environmental Science & Technology 56:4587−4596

doi: 10.1021/acs.est.1c08340
[183]

Ye J, Hu A, Gao C, Li F, Li L, et al. 2024. Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species. Angewandte Chemie International Edition 63:e202403884

doi: 10.1002/anie.202403884
[184]

Rivnay J, Raman R, Robinson JT, Schreib C, Cohen-Karni T, et al. 2025. Integrating bioelectronics with cell-based synthetic biology. Nature Reviews Bioengineering 3:317−332

doi: 10.1038/s44222-024-00262-6
[185]

Zhang Z, Li X, Yin J, Xu Y, Fei W, et al. 2018. Emerging hydrovoltaic technology. Nature Nanotechnology 13:1109−1119

doi: 10.1038/s41565-018-0228-6
[186]

Yin J, Zhou J, Fang S, Guo W. 2020. Hydrovoltaic energy on the way. Joule 4:1852−1855

doi: 10.1016/j.joule.2020.07.015
[187]

Song Y, Fang S, Xu N, Zhu J. 2025. Solar-driven interfacial evaporation technologies for food, energy and water. Nature Reviews Clean Technology 1:55−74

doi: 10.1038/s44359-024-00009-x
[188]

Liu X, Gao H, Ward JE, Liu X, Yin B, et al. 2020. Power generation from ambient humidity using protein nanowires. Nature 578:550−554

doi: 10.1038/s41586-020-2010-9
[189]

Hu Q, Ma Y, Ren G, Zhang B, Zhou S. 2022. Water evaporation–induced electricity with Geobacter sulfurreducens biofilms. Science Advances 8:eabm8047

doi: 10.1126/sciadv.abm8047
[190]

Hu Q, Lin X, Ren G, Lü J, Wang W, et al. 2024. Hydrovoltaic electricity generation induced by living leaf transpiration. Nature Water 2:988−998

doi: 10.1038/s44221-024-00311-9
[191]

Ren G, Ye J, Hu Q, Zhang D, Yuan Y, et al. 2024. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nature Communications 15:4992

doi: 10.1038/s41467-024-49429-0
[192]

Ye J, Ren G, Liu L, Zhang D, Zeng RJ, et al. 2024. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nature Water 2:531−540

doi: 10.1038/s44221-024-00253-2
[193]

Wu W, Wang ZL. 2016. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews Materials 1:16031

doi: 10.1038/natrevmats.2016.31
[194]

Cheng H, Jing Z, Yang L, Lu A, Ren G, et al. 2021. Sunlight-triggered synergy of hematite and Shewanella oneidensis MR-1 in Cr(VI) removal. Geochimica et Cosmochimica Acta 305:19−32

doi: 10.1016/j.gca.2021.04.034
[195]

Li R, Liu X, Wu G, Li G, Chen JH, et al. 2025. Pyrite stimulates the growth and sulfur oxidation capacity of anoxygenic phototrophic sulfur bacteria in euxinic environments. Science Advances 11:eadu7080

doi: 10.1126/sciadv.adu7080
[196]

Chen C, Ding S, Wang J. 2024. Materials consideration for the design, fabrication and operation of microscale robots. Nature Reviews Materials 9:159−172

doi: 10.1038/s41578-023-00641-2
[197]

Hahn J, Ding S, Im J, Harimoto T, Leong KW, et al. 2024. Bacterial therapies at the interface of synthetic biology and nanomedicine. Nature Reviews Bioengineering 2:120−135

doi: 10.1038/s44222-023-00119-4
[198]

Zhang Z, Chen Y, Klausen LH, Skaanvik SA, Wang D, et al. 2023. The rational design and development of microalgae-based biohybrid materials for biomedical applications. Engineering 24:102−113

doi: 10.1016/j.eng.2022.09.016
[199]

Zhang F, Li Z, Duan Y, Luan H, Yin L, et al. 2022. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. Science Advances 8:eade6455

doi: 10.1126/sciadv.ade6455
[200]

Zhang F, Guo Z, Li Z, Luan H, Yu Y, et al. 2024. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Science Advances 10:eadn6157

doi: 10.1126/sciadv.adn6157
[201]

Yu Q, Mao H, Zhao Z, Quan X, Zhang Y. 2023. Electromotive force induced by dynamic magnetic field electrically polarized sediment to aggravate methane emission. Water Research 240:120097

doi: 10.1016/j.watres.2023.120097
[202]

Sun Z, Li T, Wu F, Yao T, Yang H, et al. 2024. Precise synergistic photothermal therapy guided by accurate temperature-dependent NIR-II fluorescence imaging. Advanced Functional Materials 34:2311622

doi: 10.1002/adfm.202311622
[203]

Zarei M, Lee G, Lee SG, Cho K. 2023. Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human–machine interfaces. Advanced Materials 35:2203193

doi: 10.1002/adma.202203193
[204]

Ye J, Wang S, Yang C, Zuo Z, Gu W, et al. 2025. Biohybrid-based pyroelectric bio-denitrification driven by temperature fluctuations. Nature Communications 16:5877

doi: 10.1038/s41467-025-60908-w
[205]

Pi S, Yang W, Feng W, Yang R, Chao W, et al. 2023. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nature Sustainability 6:1673−84

doi: 10.1038/s41893-023-01233-2
[206]

Lin Y, Gao X, Yue J, Fang Y, Shi J, et al. 2023. A soil-inspired dynamically responsive chemical system for microbial modulation. Nature Chemistry 15:119−28

doi: 10.1038/s41557-022-01064-2
[207]

Li Y, Li Y, Liu Y, Wu Y, Wu J, et al. 2020. Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs. Science Advances 6:eabc3687

doi: 10.1126/sciadv.abc3687
[208]

Ge Q, Liu Y, You W, Wang W, Li K, et al. 2023. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air–water interface. PNAS Nexus 2:pgad389

doi: 10.1093/pnasnexus/pgad389
[209]

Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK. 2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences 101:12818−12823

doi: 10.1073/pnas.0405289101
[210]

Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, et al. 2019. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. The ISME Journal 13:1750−62

doi: 10.1038/s41396-019-0391-2
[211]

Beyazay T, Ochoa-Hernández C, Song Y, Belthle KS, Martin WF, et al. 2023. Influence of composition of nickel-iron nanoparticles for abiotic CO2 conversion to early prebiotic organics. Angewandte Chemie International Edition 62:e202218189

doi: 10.1002/anie.202218189
[212]

Hudson R, de Graaf R, Strandoo Rodin M, Ohno A, Lane N, et al. 2020. CO2 reduction driven by a pH gradient. Proceedings of the National Academy of Sciences 117:22873−22879

doi: 10.1073/pnas.2002659117