[1]

Solano F. 2014. Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New Journal of Science 2014:98276

doi: 10.1155/2014/498276
[2]

Cordero RJB, Casadevall A. 2017. Functions of fungal melanin beyond virulence. Fungal Biology Reviews 31:99−112

doi: 10.1016/j.fbr.2016.12.003
[3]

ElObeid AS, Kamal-Eldin A, Abdelhalim MAK, Haseeb AM. 2017. Pharmacological properties of melanin and its function in health. Basic & Clinical Pharmacology & Toxicology 120:515−22

doi: 10.1111/bcpt.12748
[4]

McNamara ME, Rossi V, Slater TS, Rogers CS, Ducrest AL, et al. 2021. Decoding the evolution of melanin in vertebrates. Trends in Ecology & Evolution 36:430−43

doi: 10.1016/j.tree.2020.12.012
[5]

Song W, Yang H, Liu S, Yu H, Li D, et al. 2023. Melanin: insights into structure, analysis, and biological activities for future development. Journal of Materials Chemistry B 11(32):7528−43

doi: 10.1039/d3tb01132a
[6]

Glagoleva, AY, Shoeva OY, Khlestkina EK. 2020. Melanin pigment in plants: current knowledge and future perspectives. Frontiers in Plant Science 11:770

doi: 10.3389/fpls.2020.00770
[7]

Yamauchi K, Mitsunaga T. 2016. Melanogenesis and melanosome transportation modulators from medicinal plants. Letters in Drug Design & Discovery 13:742−51

doi: 10.2174/157018081308160826183039
[8]

Varga M, Berkesi O, Darula Z, May NV, Palágyi A. 2016. Structural characterization of allomelanin from black oat. Phytochemistry 130:313−20

doi: 10.1016/j.phytochem.2016.07.002
[9]

Fei X, Qi Y, Lei Y, Wang S, Hu H, et al. 2021. Transcriptome and metabolite analysis reveals key genes for melanin synthesis during the development of Zanthoxylum bungeanum seeds. Industrial Crops and Products 165:113419

doi: 10.1016/j.indcrop.2021.113419
[10]

Dehon L, Mondolot L, Durand M, Chalies C, Andary C, et al. 2001. Differential compartmentation of o-diphenols and peroxidase activity in the inner sapwood of the Juglans nigra tree. Plant Physiology and Biochemistry 39:473−77

doi: 10.1016/S0981-9428(01)01260-8
[11]

Dehon L, Macheix JJ, Durand M. 2002. Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. Journal of Experimental Botany 53:303−11

doi: 10.1093/jexbot/53.367.303
[12]

Alam MZ, Ramachandran T, Antony A, Hamed F, Ayyash M, et al. 2022. Melanin is a plenteous bioactive phenolic compound in date fruits (Phoenix dactylifera L.). Scientific Reports 12:6614

doi: 10.1038/s41598-022-10546-9
[13]

Kurkiewicz S, Marek Ł, Kurkiewicz M, Kurkiewicz A, Dzierżęga-Lęcznar A. 2022. Are plants capable of pheomelanin synthesis? Gas chromatography/tandem mass spectrometry characterization of thermally degraded melanin isolated from Echinacea purpurea. Processes 10:2465

doi: 10.3390/pr10112465
[14]

Kanjanaphachoat P, Wei BY, Lo SF, Wang IW, Wang CS, et al. 2012. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxlyase results in a dark brown phenotype and stunted growth. Plant Molecular Biology 78:525−43

doi: 10.1007/s11103-012-9882-5
[15]

Sun Y, Wang B, Ren J, Zhou Y, Han Y, et al. 2022. OsbZIP18, a positive regulator of serotonin biosynthesis, negatively controls the UV-B tolerance in rice. International Journal of Molecular Sciences 23:3215

doi: 10.3390/ijms23063215
[16]

Tran-Ly AN, Reyes C, Schwarze FWMR, Ribera J. 2020. Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology 36:170

doi: 10.1007/s11274-020-02941-z
[17]

Yang X, Tang C, Zhao Q, Jia Y, Qin Y, et al. 2023. Melanin: a promising source of functional food ingredient. Journal of Functional Foods 105:105574

doi: 10.1016/j.jff.2023.105574
[18]

Weltzien E. 1988. Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East. Plant Breeding 101:95−106

doi: 10.1111/j.1439-0523.1988.tb00273.x
[19]

Qi Y, Liu J, Liu Y, Yan D, Wu H, et al. 2020. Polyphenol oxidase plays a critical role in melanin formation in the fruit skin of persimmon (Diospyros kaki cv. 'Heishi'). Food Chemistry 330:127253

doi: 10.1016/j.foodchem.2020.127253
[20]

Takahashi R, Akiyama T. 1993. Characterization of a melanin associated with low temperature-induced browning in soybean seed coats. Phytochemistry 34:587−88

doi: 10.1016/0031-9422(93)80056-X
[21]

Kogo Y, Sameshima N, Ukena Y, Tsutsuura S, Murata M. 2018. Enzymatic browning and polyphenol oxidase of mung bean sprout during cold storage. Food Science and Technology Research 24:573−81

doi: 10.3136/fstr.24.573
[22]

Hou D, Lu H, Zhao Z, Pei J, Yang H, et al. 2022. Integrative transcriptomic and metabolomic data provide insights into gene networks associated with lignification in postharvest Lei bamboo shoots under low temperature. Food Chemistry 368:130822

doi: 10.1016/j.foodchem.2021.130822
[23]

Wei HT, Hou D, Ashraf MF, Lu HW, Zhuo J, et al. 2021. Metabolic profiling and transcriptome analysis reveal the key role of flavonoids in internode coloration of Phyllostachys violascens cv. Viridisulcata. Frontiers in Plant Science 12:788895

doi: 10.3389/fpls.2021.788895
[24]

Qian Q, Zhang H, Zhang P, Lan Z, Wang H, et al. 2024. Integrated transcriptomics and metabolomics provide new insights into the leaf coloration of a bamboo variant Phyllostachys violascens var. Flavistriatus. Scientia Horticulturae 334:113330

doi: 10.1016/j.scienta.2024.113330
[25]

Zou LH, Yang YQ, Liu X, Ramakrishnan M, Zhou M. 2023. Comprehensive physiological, cytological, and transcriptional regulatory analyses reveal the coloration mechanism of culm yellow-slot mutation in moso bamboo (Phyllostachys edulis). Industrial Crops and Products 204:117328

doi: 10.1016/j.indcrop.2023.117328
[26]

Zhang CS, Shi R. 2015. Determination of anthocyanins content in different parts of Indosasa hispida McClure cv. 'Rainbow'. International Journal of Science 2:82−85

[27]

Wang Y, Yang Y, Wang J, Yuan X. 2018. Transcriptome analysis identified genes involved in anthocyanin biosynthesis in Rainbow bamboo (Indosana hispida MeClure cv. 'Rainbow'). Plant Omics Journal 11(3):145−52

doi: 10.21475/poj.11.03.18.p1442
[28]

Cai O, Zhang H, Yang L, Wu H, Qin M, et al. 2024. Integrated transcriptome and metabolome analyses reveal bamboo culm color formation mechanisms involved in anthocyanin biosynthetic in Phyllostachys nigra. International Journal of Molecular Sciences 25(3):1738

doi: 10.3390/ijms25031738
[29]

Dong R. 2010. Chemical analysis of Phyllostachys nigra materials and the skin pigment. Thesis. Zhejiang A&U University, China

[30]

Zhao H, Gao Z, Wang L, Wang J, Wang S, et al. 2018. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7:giy115

doi: 10.1093/gigascience/giy115
[31]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53:D672−D677

doi: 10.1093/nar/gkae909
[32]

Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, et al. 2017. Characterization and expression analysis of the WRKY gene family in moso bamboo. Scientific Reports 7:6675

doi: 10.1038/s41598-017-06701-2
[33]

Elakhdar A, Fukuda M, Kubo T. 2021. Agrobacterium-mediated transformation of Japonica rice using mature embryos and regenerated transgenic plants. Bio-Protocol Journal 11:e4143

doi: 10.21769/BioProtoc.4143
[34]

Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25

doi: 10.1038/nprot.2006.286
[35]

Kang S, Kang K, Lee K, Back K. 2007. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Reports 26:2009−15

doi: 10.1007/s00299-007-0405-9
[36]

Zhang M, Hu S, Yi F, Gao Y, Zhu D, et al. 2021. Organelle visualization with multicolored fluorescent markers in bamboo. Frontiers in Plant Science 12:658836

doi: 10.3389/fpls.2021.658836
[37]

Jain N, Vergish S, Khurana JP. 2018. Validation of house-keeping genes for normalization of gene expression data during diurnal/circadian studies in rice by RT-qPCR. Scientific Reports 8:3203

doi: 10.1038/s41598-018-21374-1
[38]

Fan C, Ma J, Guo Q, Li X, Wang H, et al. 2013. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8(2):e56573

doi: 10.1371/journal.pone.0056573
[39]

Li Y, Li Z, Xu C, Wang Q. 2025. WRKYs as regulatory hubs of secondary metabolic networks: diverse inducers and distinct responses. Plant Communications 6:101438

doi: 10.1016/j.xplc.2025.101438
[40]

Wei J, Shen Y, Lu Y, Ying Y. 2011. Application of Chimonobambusa marmorea f. Variegata Ohwi in landscape architecture. Jiangsu Agricultural Sciences 39:286−87

doi: 10.3969/j.issn.1002-1302.2011.02.099
[41]

Park EJ, Jhon DY. 2010. The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT - Food Science and Technology 43:655−59

doi: 10.1016/j.lwt.2009.11.005
[42]

Shataer M, Shataer S, Liao L, Li T, Bai S. 2020. Histological comparison of two special methods of staining melanin in human skin. International Journal of Morphology, 38(6):1535−38

doi: 10.4067/S0717-95022020000601535
[43]

Hou R, Liu X, Xiang K, Chen L, Wu X, et al. 2019. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chemistry 277:533−42

doi: 10.1016/j.foodchem.2018.11.002
[44]

Wang XJ, Feng L, Peng F, Ma Q, Li M, et al. 2019. Comparative study on purification effect of melanin in pepper (Zanthoxylum bungeanum) seed coat by different treatment methods. Modern Food Science and Technology 35:236−43

doi: 10.13982/j.mfst.1673-9078.2019.5.033
[45]

Li W , Wen L , Chen Z, Zhang Z, Pang X, et al. 2021. Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chemistry 357(4):129791

doi: 10.1016/j.foodchem.2021.129791
[46]

Tyagi A, Shabbir U, Chelliah R, Daliri EBM, Chen X, et al. 2021. Limosilactobacillus reuteri fermented brown rice: a product with enhanced bioactive compounds and antioxidant potential. Antioxidants 10:1077

doi: 10.3390/antiox10071077
[47]

Guo Y, Han C, Tian S, Zhu J, Zhou S, et al. 2024. Properties and antioxidant activities in vitro of three Auricularia heimuer melanin. Food Research and Development 45(13):63−69

doi: 10.12161/j.issn.1005-6521.2024.13.009
[48]

Zhu W, Li H, Dong P, Ni X, Fan M, et al. 2023. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. Plant Physiology 193:855−73

doi: 10.1093/plphys/kiad322
[49]

Huang S, Pan Y, Gan D, Ouyang X, Tang S, et al. 2011. Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research 20(4):475−81

doi: 10.1007/s00044-010-9341-2
[50]

Yang J, Guo C, Chen F, Lv B, Song J, et al. 2024. Heat-induced modulation of flavonoid biosynthesis via a LhMYBC2-Mediated regulatory network in oriental hybrid lily. Plant Physiology and Biochemistry 214:108966

doi: 10.1016/j.plaphy.2024.108966
[51]

Sameshima N, Nishimura M, Murakami K, Kogo Y, Shimamura Y, et al. 2016. Cloning of phenylalanine ammonia-lyase and its role in enzymatic browning of mung bean sprout during cold storage. Food Science and Technology Research 22:255−60

doi: 10.3136/fstr.22.255
[52]

Kwon-Chung KJ, Tom WK, Costa JL. 1983. Utilization of indole compounds by Cryptococcus neoformans to produce a melanin-like pigment. Journal of Clinical Microbiology 18:1419−21

doi: 10.1128/jcm.18.6.1419-1421.1983
[53]

Vercruysse K, Clark A, Alatas N, Brooks D, Hamza N, et al. 2018. Polysaccharide-mediated synthesis of melanins from serotonin and other 5-hydroxy indoles. Future Science OA 4:FSO280

doi: 10.4155/fsoa-2017-0118
[54]

Mukherjee S. 2018. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiology and Biochemistry 132:33−45

doi: 10.1016/j.plaphy.2018.08.031
[55]

Kang K, Kim YS, Park S, Back K. 2009. Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiology 150:1380−93

doi: 10.1104/pp.109.138552
[56]

Yang QQ, Zhao DS, Zhang CQ, Wu HY, Li QF, et al. 2018. A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiology 176:1965−80

doi: 10.1104/pp.17.01283
[57]

Negri S, Commisso M, Avesani L, Guzzo F. 2021. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. Journal of Experimental Botany 72:5336−55

doi: 10.1093/jxb/erab220
[58]

Mishra V, Sarkar AK. 2023. Serotonin: a frontline player in plant growth and stress responses. Physiologia Plantarum 175:e13968

doi: 10.1111/ppl.13968
[59]

Cheng C, Liu J, Qu P, Tong Z, Zhang Y. 2023. Molecular and functional insights into MaTDC and MaASMT genes associated with melatonin biosynthesis and low temperature stress in banana. Scientia Horticulturae 318:112090

doi: 10.1016/j.scienta.2023.112090
[60]

Zhou J, Wang X, He Y, Sang T, Wang P, et al. 2020. Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. The Plant Cell 32:2621−38

doi: 10.1105/tpc.19.00971
[61]

Jin B, Zhou X, Jiang B, Gu Z, Zhang P, et al. 2015. Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance. Rice 8:18

doi: 10.1186/s12284-015-0052-7
[62]

Yan Y, Wang P, He C, Shi H. 2017. MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochemical and Biophysical Research Communications 494:20−26

doi: 10.1016/j.bbrc.2017.10.091
[63]

Li Y, Miao Y, Yuan H, Huang F, Sun M, et al. 2024. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. Molecular Plant 17:1866−82

doi: 10.1016/j.molp.2024.11.002