[1]

Evans K. 2016. The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy 2:316−331

doi: 10.1007/s40831-016-0060-x
[2]

Huang L, You F. 2018. Ecological engineering of soil-plant systems to rehabilitate bauxite residues: current progress, barriers and innovations. Alumina2018 - The 11th AQW International Conference, Gladstone, Queensland, Australia, ed. Canfell A, Ladhams M. Gladstone, Qld, Australia: AQW Inc. pp. 134−142 https://aqw.com.au/papers/item/ecological-engineering-of-soil-plant-systems-to-rehabilitate-bauxite-residues-current-progress-barriers-and-innovations

[3]

You F, Zhang L, Ye J, Huang L. 2019. Microbial decomposition of biomass residues mitigated hydrogeochemical dynamics in strongly alkaline bauxite residues. Science of The Total Environment 663:216−226

doi: 10.1016/j.scitotenv.2019.01.317
[4]

Ma Y, You F, Parry D, Urban A, Huang L. 2023. Adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacterial communities enriched from biofilms colonising strongly alkaline and saline bauxite residue. Science of the Total Environment 856:159131

doi: 10.1016/j.scitotenv.2022.159131
[5]

Di Carlo E, Boullemant A, Courtney R. 2019. A field assessment of bauxite residue rehabilitation strategies. Science of The Total Environment 663:915−926

doi: 10.1016/j.scitotenv.2019.01.376
[6]

Bray AW, Stewart DI, Courtney R, Rout SP, Humphreys PN, et al. 2018. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment. Environmental Science & Technology 52:152−161

doi: 10.1021/acs.est.7b03568
[7]

Miura YS, Mulder J, Zivanovic V, Courtney R, Okkenhaug G. 2023. Enhancing bauxite residue properties for plant growth: Gypsum and organic amendment effects on chemical properties of soil and leachate. Journal of Environmental Management 337:117721

doi: 10.1016/j.jenvman.2023.117721
[8]

Wu S, Liu Y, Bougoure JJ, Southam G, Chan TS, et al. 2019. Organic matter amendment and plant colonization drive mineral weathering, organic carbon sequestration, and water-stable aggregation in magnetite fe ore tailings. Environmental Science & Technology 53:13720−13731

doi: 10.1021/acs.est.9b04526
[9]

Flowers TJ, Colmer TD. 2015. Plant salt tolerance: adaptations in halophytes. Annals of Botany 115:327−331

doi: 10.1093/aob/mcu267
[10]

Bui E. 2013. Possible role of soil alkalinity in plant breeding for salt-tolerance. Biology Letters 9:20130566

doi: 10.1098/rsbl.2013.0566
[11]

Yang C, Guo W, Shi D. 2010. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata. Agronomy Journal 102:1081−1089

doi: 10.2134/agronj2009.0471
[12]

Wu S, Liu Y, Southam G, Robertson LM, Wykes J, et al. 2021. Rhizosphere drives biotite-like mineral weathering and secondary Fe–Si mineral formation in Fe ore tailings. ACS Earth and Space Chemistry

doi: 10.1021/acsearthspacechem.0c00331
[13]

Robertson LM, Wu S, You F, Huang L, Southam G, et al. 2020. Geochemical and mineralogical changes in magnetite Fe-ore tailings induced by biomass organic matter amendment. Science of The Total Environment 724:138196

doi: 10.1016/j.scitotenv.2020.138196
[14]

Wu S, Liu Y, Southam G, Nguyen TAH, Konhauser KO, et al. 2023. Ecological engineering of iron ore tailings into useable soils for sustainable rehabilitation. iScience 26:107102

doi: 10.1016/j.isci.2023.107102
[15]

Lu C, Wu S, Ma L, You F, Saha N, et al. 2025. Haloalkalitolerant plants drive alkaline mineral weathering and dealkalization of seawater-treated bauxite residue. Plant and Soil

doi: 10.1007/s11104-025-07501-8
[16]

Schwertmann U, Cornell RM. 2000. Iron oxides in the laboratory: preparation and characterization. Winheim, Germany: John Wiley & Sons. doi: 10.1002/9783527613229

[17]

Pokrovski GS, Schott J, Farges F, Hazemann JL. 2003. Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta 67:3559−3573

doi: 10.1016/S0016-7037(03)00160-1
[18]

Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation 12:537−541

doi: 10.1107/s0909049505012719
[19]

Cowie BCC, Tadich A, Thomsen L. 2010. The current performance of the wide range (90−2500 eV) soft X-ray beamline at the Australian synchrotron. AIP Conference Proceedings 1234:307−310

doi: 10.1063/1.3463197
[20]

Gann E, McNeill CR, Tadich A, Cowie BC, Thomsen L. 2016. Quick AS NEXAFS Tool (QANT): a program for NEXAFS loading and analysis developed at the Australian Synchrotron. Journal of Synchrotron Radiation 23:374−380

doi: 10.1107/S1600577515018688
[21]

Solomon D, Lehmann J, Kinyangi J, Liang B, Schäfer T. 2005. Carbon K-edge NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in soils. Soil Science Society of America Journal 69:107−119

doi: 10.2136/sssaj2005.0107dup
[22]

Prietzel J, Müller S, Kögel-Knabner I, Thieme J, Jaye C, et al. 2018. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy. Science of The Total Environment 628−629:906−918

doi: 10.1016/j.scitotenv.2018.02.121
[23]

Hitchcock AP. 2023. Analysis of X-ray images and spectra (aXis2000): a toolkit for the analysis of X-ray spectromicroscopy data. Journal of Electron Spectroscopy and Related Phenomena 266:147360

doi: 10.1016/j.elspec.2023.147360
[24]

Di Carlo E, Chen CR, Haynes RJ, Phillips IR, Courtney R. 2019. Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review. Soil Research 57:419

doi: 10.1071/sr18348
[25]

Hu YF, Xu RK, Dynes JJ, Blyth RIR, Yu G, et al. 2008. Coordination nature of aluminum (oxy)hydroxides formed under the influence of tannic acid studied by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta 72:1959−1969

doi: 10.1016/j.gca.2008.02.002
[26]

Yoon TH, Johnson SB, Benzerara K, Doyle CS, Tyliszczak T, et al. 2004. In situ characterization of aluminum-containing mineral−microorganism aqueous suspensions using scanning transmission X-ray microscopy. Langmuir 20:10361−10366

doi: 10.1021/la048558y
[27]

Li D, Bancroft GM, Fleet ME, Feng XH. 1995. Silicon K-edge XANES spectra of silicate minerals. Physics and Chemistry of Minerals 22:115−122

doi: 10.1007/BF00202471
[28]

Shaw SA, Peak D, Hendry MJ. 2009. Investigation of acidic dissolution of mixed clays between pH 1.0 and −3.0 using Si and Al X-ray absorption near edge structure. Geochimica et Cosmochimica Acta 73:4151−4165

doi: 10.1016/j.gca.2009.04.004
[29]

Doelsch E, Stone WEE, Petit S, Masion A, Rose J, et al. 2001. Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence ofSiO4 Ligands. 2. Characterization of Si−Fe Aggregates by FTIR and 29Si Solid-State NMR. Langmuir 17:1399−1405

doi: 10.1021/la0013188
[30]

Schuttlefield JD, Cox D, Grassian VH. 2007. An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements. Journal of Geophysical Research: Atmospheres 112:D21303

doi: 10.1029/2007jd008973
[31]

Chapman SJ, Campbell CD, Fraser AR, Puri G. 2001. FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biology and Biochemistry 33:1193−1200

doi: 10.1016/S0038-0717(01)00023-2
[32]

Artz RRE, Chapman SJ, Jean Robertson AH, Potts JM, Laggoun-Défarge F, et al. 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry 40:515−527

doi: 10.1016/j.soilbio.2007.09.019
[33]

Kenney JPL, Gorzsás A. 2019. Applications of fourier-transform infrared spectroscopy in geomicrobiology. In Analytical Geomicrobiology: A Handbook of Instrumental Techniques, ed. Kenney JPL, Veeramani H, Alessi DS. Cambridge: Cambridge University Press. pp. 288−313 doi: 10.1017/9781107707399.012

[34]

Drever JI, Stillings LL. 1997. The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 120:167−181

doi: 10.1016/S0927-7757(96)03720-X
[35]

Hasegawa PM. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92:19−31

doi: 10.1016/j.envexpbot.2013.03.001
[36]

Pawlik Ł, Phillips JD, Šamonil P. 2016. Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes—a critical literature review. Earth-Science Reviews 159:142−159

doi: 10.1016/j.earscirev.2016.06.002
[37]

Wang S, Nguyen T, Peng H, Huang L. 2020. On the mechanism of sodic removal from bauxite residue and Bauxite Desilication Products (BDP) using acetic acid. JOM Journal of the Minerals Metals and Materials Society 72:309−318

doi: 10.1007/s11837-019-03884-z
[38]

Wang S, Nguyen T, Peng H, Wu S, Parry D, et al. 2023. Sodium removal from bauxite desilication product (sodalite) aided by chelating effects of inorganic and organic acids. Journal of Environmental Management 338:117837

doi: 10.1016/j.jenvman.2023.117837
[39]

Huang PM, Violante A. 1986. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. In Interactions of Soil Minerals with Natural Organics and Microbes. pp. 159−221

[40]

Calvaruso C, Turpault MP, Frey-Klett P. 2006. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Applied and Environmental Microbiology 72:1258−1266

doi: 10.1128/AEM.72.2.1258-1266.2006
[41]

Etesami H, Beattie GA. 2018. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Frontiers in Microbiology 9:148

doi: 10.3389/fmicb.2018.00148
[42]

Sun XT, Li MR, Xing JT, Li CC, Yuan GH, et al. 2021. The complex effect of organic acids on the dissolution of feldspar at high temperature. Environmental Earth Sciences 80:244

doi: 10.1007/s12665-021-09537-2
[43]

Reed T, Mauro JC, Gevaudan JP. 2024. Influence of phosphates on phase formation in alkali-activated MgO-Al2O3-SiO2-P2O5 cements. International Journal of Ceramic Engineering & Science 6:e10232

doi: 10.1002/ces2.10232
[44]

Ocanto F, Álvarez R, Urbina De Navarro C, Lieb A, et al. 2008. Influence of the alkalinity and NO3/Cl anionic composition on the synthesis of the cancrinite–sodalite system. Microporous and Mesoporous Materials 116:318−322

doi: 10.1016/j.micromeso.2008.04.019
[45]

Wu S, Konhauser KO, Chen B, Huang L. 2023. "Reactive Mineral Sink" drives soil organic matter dynamics and stabilization. NPJ Materials Sustainability 1:3

doi: 10.1038/s44296-023-00003-7
[46]

Ildefonse P, Cabaret D, Sainctavit P, Calas G, Flank AM, et al. 1998. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals. Physics and Chemistry of Minerals 25:112−121

doi: 10.1007/s002690050093
[47]

Swedlund PJ, Miskelly GM, McQuillan AJ. 2010. Silicic acid adsorption and oligomerization at the ferrihydrite−water interface: interpretation of ATR-IR spectra based on a model surface structure. Langmuir 26:3394−3401

doi: 10.1021/la903160q
[48]

Kanematsu M, Waychunas GA, Boily JF. 2018. Silicate Binding and Precipitation on Iron Oxyhydroxides. Environmental Science & Technology 52:1827−1833

doi: 10.1021/acs.est.7b04098
[49]

Bi S, Wang C, Cao Q, Zhang C. 2004. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: correlations between the "Core-links" model and "Cage-like" Keggin-Al13 model. Coordination Chemistry Reviews 248:441−455

doi: 10.1016/j.ccr.2003.11.001
[50]

Jun YS, Kim D, Neil CW. 2016. Heterogeneous nucleation and growth of nanoparticles at environmental interfaces. Accounts of Chemical Research 49:1681−1690

doi: 10.1021/acs.accounts.6b00208
[51]

Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR. 2010. Formation of acid sites in amorphous silica-alumina. Journal of Catalysis 269:201−218

doi: 10.1016/j.jcat.2009.11.008
[52]

Nail SL, White JL, Hem SL. 1976. Structure of aluminum hydroxide gel I: initial precipitate. Journal of Pharmaceutical Sciences 65:1188−1191

doi: 10.1002/jps.2600650814