[1]

Coates G, Clewes P, Lohan C, Stevenson H, Wood R, et al. 2023. Health economic impact of moderate-to-severe chronic pain associated with osteoarthritis in England: a retrospective analysis of linked primary and secondary care data. BMJ Open 13:e067545

doi: 10.1136/bmjopen-2022-067545
[2]

Steinmetz JD, Culbreth GT, Haile LM, Rafferty Q, Lo J, et al. 2023. Global, regional, and national burden of osteoarthritis, 1990−2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet Rheumatology 5:e508−e522

doi: 10.1016/S2665-9913(23)00163-7
[3]

Wang Y, Li D, Lv Z, Feng B, Li T, et al. 2023. Efficacy and safety of Gutong Patch compared with NSAIDs for knee osteoarthritis: a real-world multicenter, prospective cohort study in China. Pharmacological Research 197:106954

doi: 10.1016/j.phrs.2023.106954
[4]

Altman RD, Bedi A, Karlsson J, Sancheti P, Schemitsch E. 2016. Product differences in intra-articular hyaluronic acids for osteoarthritis of the knee. The American Journal of Sports Medicine 44:2158−65

doi: 10.1177/0363546515609599
[5]

Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. 2020. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Frontiers in Cell and Developmental Biology 8:607764

doi: 10.3389/fcell.2020.607764
[6]

Yuan C, Pan Z, Zhao K, Li J, Sheng Z, et al. 2020. Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Research 8:38

doi: 10.1038/s41413-020-00109-x
[7]

Stürmer T, Brenner H, Koenig W, Günther KP. 2004. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Annals of the Rheumatic Diseases 63:200−5

doi: 10.1136/ard.2003.007674
[8]

Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JHN, et al. 2012. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis and Cartilage 20:773−82

doi: 10.1016/j.joca.2012.04.014
[9]

Zhuo Q, Yang W, Chen J, Wang Y. 2012. Metabolic syndrome meets osteoarthritis. Nature Reviews Rheumatology 8:729−37

doi: 10.1038/nrrheum.2012.135
[10]

Khaledi F, Ghasemi S. 2022. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Current Molecular Medicine 22:8−24

doi: 10.2174/1566524021666210211112800
[11]

Barter MJ, Bui C, Young DA. 2012. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis and Cartilage 20:339−49

doi: 10.1016/j.joca.2011.12.012
[12]

Espin-Garcia O, Baghel M, Brar N, Whittaker JL, Ali SA. 2022. Can genetics guide exercise prescriptions in osteoarthritis? Frontiers in Rehabilitation Sciences 3:930421

doi: 10.3389/fresc.2022.930421
[13]

Moore LD, Le T, Fan G. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38:23−38

doi: 10.1038/npp.2012.112
[14]

Zhu X, Chen F, Lu K, Wei A, Jiang Q, et al. 2019. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice. Annals of the Rheumatic Diseases 78:1420−29

doi: 10.1136/annrheumdis-2018-214940
[15]

Hua B, Qiu J, Ye X, Kuang Y, Liu X. 2023. Epigenetic PPARγ preservation attenuates temporomandibular joint osteoarthritis. International Immunopharmacology 124:111014

doi: 10.1016/j.intimp.2023.111014
[16]

Stocum DL, Roberts WE. 2018. Part I: development and physiology of the temporomandibular joint. Current Osteoporosis Reports 16:360−68

doi: 10.1007/s11914-018-0447-7
[17]

Chen X, Zhu X, Dong J, Chen F, Gao Q, et al. 2022. Reversal of epigenetic peroxisome proliferator-activated receptor-γ suppression by diacerein alleviates oxidative stress and osteoarthritis in mice. Antioxidants & Redox Signaling 37:40−53

doi: 10.1089/ars.2021.0219
[18]

Wang C, Wang Y, Gu Y, Zhu Y, Yin R, et al. 2025. SPI1 facilitates microfracture-mediated cartilage regeneration in the elderly by enhancing bone marrow stromal cells ctemness. Journal of Tissue Engineering 16:1−17

doi: 10.1177/20417314241311073
[19]

Shen J, Wang C, Li D, Xu T, Myers J, et al. 2017. DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight 2:e93612

doi: 10.1172/jci.insight.93612
[20]

Papageorgiou AA, Litsaki M, Mourmoura E, Papathanasiou I, Tsezou A. 2023. DNA methylation regulates Sirtuin 1 expression in osteoarthritic chondrocytes. Advances in Medical Sciences 68:101−10

doi: 10.1016/j.advms.2023.02.002
[21]

Bradley EW, Carpio LR, McGee-Lawrence ME, Castillejo Becerra C, Amanatullah DF, et al. 2016. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis and Cartilage 24:1021−28

doi: 10.1016/j.joca.2015.12.014
[22]

Reid GD, Reid CG, Widmer N, Munk PL. 2010. Femoroacetabular impingement syndrome: an underrecognized cause of hip pain and premature osteoarthritis? The Journal of Rheumatology 37:1395−404

doi: 10.3899/jrheum.091186
[23]

Husen M, Leland DP, Melugin HP, Poudel K, Hevesi M, et al. 2023. Progression of osteoarthritis at long-term follow-up in patients treated for symptomatic femoroacetabular impingement with hip arthroscopy compared with nonsurgically treated patients. The American Journal of Sports Medicine 51:2986−95

doi: 10.1177/03635465231188114
[24]

Kamenaga T, Shen J, Wu M, Brophy RH, Clohisy JC, et al. 2023. Epigenetic dysregulation of articular cartilage during progression of hip femoroacetabular impingement disease. Journal of Orthopaedic Research 41:1678−86

doi: 10.1002/jor.25513
[25]

Sarkar A, Liu NQ, Magallanes J, Tassey J, Lee S, et al. 2023. STAT3 promotes a youthful epigenetic state in articular chondrocytes. Aging Cell 22:e13773

doi: 10.1111/acel.13773
[26]

Iijima H, Gilmer G, Wang K, Bean AC, He Y, et al. 2023. Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity. Nature Communications 14:18

doi: 10.1038/s41467-022-35359-2
[27]

Zhang Y, He L, Yang Y, Cao J, Su Z, et al. 2023. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. Journal of Hazardous Materials 447:130747

doi: 10.1016/j.jhazmat.2023.130747
[28]

Shen J, Abu-Amer Y, O'Keefe RJ, McAlinden A. 2017. Inflammation and epigenetic regulation in osteoarthritis. Connective Tissue Research 58:49−63

doi: 10.1080/03008207.2016.1208655
[29]

Kawarai Y, Nakamura J, Hagiwara S, Suzuki-Narita M, Inage K, et al. 2024. Alterations in DNA methylation machinery in a rat model of osteoarthritis of the hip. Journal of Orthopaedic Surgery and Research 19:357

doi: 10.1186/s13018-024-04847-0
[30]

Smeriglio P, Grandi FC, Davala S, Masarapu V, Indelli PF, et al. 2020. Inhibition of TET1 prevents the development of osteoarthritis and reveals the 5hmC landscape that orchestrates pathogenesis. Science Translational Medicine 12:eaax2332

doi: 10.1126/scitranslmed.aax2332
[31]

Pandey A, Hoover M, Singla M, Bedi Y, Storaci H, et al. 2024. TET1 regulates skeletal stem–cell mediated cartilage regeneration. Arthritis & Rheumatology 76:216−30

doi: 10.1002/art.42678
[32]

Kim S, Kaang BK. 2017. Epigenetic regulation and chromatin remodeling in learning and memory. Experimental & Molecular Medicine 49:e281

doi: 10.1038/emm.2016.140
[33]

Khan NM, Haqqi TM. 2018. Epigenetics in osteoarthritis: potential of HDAC inhibitors as therapeutics. Pharmacological Research 128:73−79

doi: 10.1016/j.phrs.2017.08.007
[34]

Cai D, Yin S, Yang J, Jiang Q, Cao W. 2015. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Research & Therapy 17:269

doi: 10.1186/s13075-015-0774-3
[35]

Ohzono H, Hu Y, Nagira K, Kanaya H, Okubo N, et al. 2023. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Annals of the Rheumatic Diseases 82:262−71

doi: 10.1136/ard-2021-221269
[36]

Wen ZH, Huang JS, Lin YY, Yao ZK, Lai YC, et al. 2021. Chondroprotective effects of a histone deacetylase inhibitor, panobinostat, on pain behavior and cartilage degradation in anterior cruciate ligament transection-induced experimental osteoarthritic rats. International Journal of Molecular Sciences 22:7290

doi: 10.3390/ijms22147290
[37]

Barter MJ, Butcher A, Wang H, Tsompani D, Galler M, et al. 2022. HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression. Scientific Reports 12:6640

doi: 10.1038/s41598-022-10518-z
[38]

Zheng Y, Chen Y, Lu X, Weng Q, Dai G, et al. 2020. Inhibition of histone deacetylase 6 by tubastatin a attenuates the progress of osteoarthritis via improving mitochondrial function. The American Journal of Pathology 190:2376−86

doi: 10.1016/j.ajpath.2020.08.013
[39]

Collins JA, Kapustina M, Bolduc JA, Pike JFW, Diekman BO, et al. 2021. Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radical Biology and Medicine 166:90−103

doi: 10.1016/j.freeradbiomed.2021.01.054
[40]

Collins JA, Kim CJ, Coleman A, Little A, Perez MM, et al. 2023. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Annals of the Rheumatic Diseases 82:1464−73

doi: 10.1136/ard-2023-224385
[41]

Ji ML, Jiang H, Li Z, Geng R, Hu JZ, et al. 2022. Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nature Communications 13:7658

doi: 10.1038/s41467-022-35424-w
[42]

Ma ZX, Xu H, Xiang W, Qi J, Xu YY, et al. 2021. Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9. European Review for Medical and Pharmacological Sciences 25:626−35

doi: 10.26355/eurrev_202101_24621
[43]

Lu Q, Liu P, Miao Z, Luo D, Li S, et al. 2022. SIRT1 restoration enhances chondrocyte autophagy in osteoarthritis through PTEN-mediated EGFR ubiquitination. Cell Death Discovery 8:203

doi: 10.1038/s41420-022-00896-8
[44]

Sacitharan PK, Bou-Gharios G, Edwards JR. 2020. SIRT1 directly activates autophagy in human chondrocytes. Cell Death Discovery 6:41

doi: 10.1038/s41420-020-0277-0
[45]

Zhang Y, Liu Y, Hou M, Xia X, Liu J, et al. 2023. Reprogramming of mitochondrial respiratory chain complex by targeting SIRT3-COX4I2 axis attenuates osteoarthritis progression. Advanced Science 10:2206144

doi: 10.1002/advs.202206144
[46]

Mei Z, Yilamu K, Ni W, Shen P, Pan N, et al. 2025. Chondrocyte fatty acid oxidation drives osteoarthritis via SOX9 degradation and epigenetic regulation. Nature Communications 16:4892

doi: 10.1038/s41467-025-60037-4
[47]

Shao R, Suo J, Zhang Z, Kong M, Ma Y, et al. 2024. H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis. Cell Death & Differentiation 31:106−18

doi: 10.1038/s41418-023-01244-8
[48]

Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, et al. 2021. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Research 9:30

doi: 10.1038/s41413-021-00148-y
[49]

Shpargel KB, Starmer J, Yee D, Pohlers M, Magnuson T. 2014. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLoS Genetics 10:e1004507

doi: 10.1371/journal.pgen.1004507
[50]

Dai J, Yu D, Wang Y, Chen Y, Sun H, et al. 2017. Kdm6b regulates cartilage development and homeostasis through anabolic metabolism. Annals of the Rheumatic Diseases 76:1295−303

doi: 10.1136/annrheumdis-2016-210407
[51]

Jin Y, Liu Z, Li Z, Li H, Zhu C, et al. 2022. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. International Journal of Oral Science 14:34

doi: 10.1038/s41368-022-00190-4
[52]

Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, et al. 2022. Histone H3K27 demethylase UTX compromises articular chondrocyte anabolism and aggravates osteoarthritic degeneration. Cell Death & Disease 13:538

doi: 10.1038/s41419-022-04985-5
[53]

Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, et al. 2023. Inhibition of histone lysine demethylase 6A promotes chondrocytic activity and attenuates osteoarthritis development through repressing H3K27me3 enhancement of Wnt10a. The International Journal of Biochemistry & Cell Biology 158:106394

doi: 10.1016/j.biocel.2023.106394
[54]

Du X, Chen Y, Zhang Q, Lin J, Yu Y, et al. 2020. Ezh2 ameliorates osteoarthritis by activating TNFSF13B. Journal of Bone and Mineral Research 35:956−65

doi: 10.1002/jbmr.3952
[55]

Assi R, Cherifi C, Cornelis FMF, Zhou Q, Storms L, et al. 2023. Inhibition of KDM7A/B histone demethylases restores H3K79 methylation and protects against osteoarthritis. Annals of the Rheumatic Diseases 82:963−73

doi: 10.1136/ard-2022-223789
[56]

Monteagudo S, Cornelis FMF, Aznar-Lopez C, Yibmantasiri P, Guns LA, et al. 2017. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nature Communications 8:15889

doi: 10.1038/ncomms15889
[57]

De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, et al. 2021. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. JCI Insight 6:e150451

doi: 10.1172/jci.insight.150451
[58]

Endisha H, Datta P, Sharma A, Nakamura S, Rossomacha E, et al. 2021. microRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis & Rheumatology 73:426−39

doi: 10.1002/art.41552
[59]

Nakamura A, Rampersaud YR, Nakamura S, Sharma A, Zeng F, et al. 2019. microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. Annals of the Rheumatic Diseases 78:111−21

doi: 10.1136/annrheumdis-2018-213629
[60]

Tavallaee G, Lively S, Rockel JS, Ali SA, Im M, et al. 2022. Contribution of microRNA-27b-3p to synovial fibrotic responses in knee osteoarthritis. Arthritis & Rheumatology 74:1928−42

doi: 10.1002/art.42285
[61]

Yin CM, Suen WCW, Lin S, Wu XM, Li G, et al. 2017. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone & Joint Research 6:612−18

doi: 10.1302/2046-3758.611.BJR-2017-0090.R1
[62]

Ji ML, Jiang H, Wu F, Geng R, Ya LK, et al. 2021. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Annals of the Rheumatic Diseases 80:356−66

doi: 10.1136/annrheumdis-2020-218469
[63]

Wilson TG, Baghel M, Kaur N, Datta I, Loveless I, et al. 2025. Circulating miR-126-3p is a mechanistic biomarker for knee osteoarthritis. Nature Communications 16:2021

doi: 10.1038/s41467-025-57308-5
[64]

Wang Y, Li T, Yang Q, Feng B, Xiang Y, et al. 2021. LncRNA THUMPD3-AS1 enhances the proliferation and inflammatory response of chondrocytes in osteoarthritis. International Immunopharmacology 100:108138

doi: 10.1016/j.intimp.2021.108138
[65]

van Hoolwerff M, Metselaar PI, Tuerlings M, Suchiman HED, Lakenberg N, et al. 2020. Elucidating epigenetic regulation by identifying functional cis-acting long noncoding RNAs and their targets in osteoarthritic articular cartilage. Arthritis & Rheumatology 72:1845−54

doi: 10.1002/art.41396
[66]

Nanus DE, Wijesinghe SN, Pearson MJ, Hadjicharalambous MR, Rosser A, et al. 2020. Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis & Rheumatology 72:609−19

doi: 10.1002/art.41158
[67]

Wang R, Mehrjou B, Dehghan-Banian D, Wang BYH, Li Q, et al. 2025. Targeting long noncoding RNA H19 in subchondral bone osteocytes and the alleviation of cartilage degradation in osteoarthritis. Arthritis & Rheumatology 77:283−97

doi: 10.1002/art.43028
[68]

Zaccara S, Ries RJ, Jaffrey SR. 2019. Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology 20:608−24

doi: 10.1038/s41580-019-0168-5
[69]

Liu Q, Li M, Jiang L, Jiang R, Fu B. 2019. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochemical and Biophysical Research Communications 516:22−27

doi: 10.1016/j.bbrc.2019.05.168
[70]

Xiao L, Hu B, Ding B, Zhao Q, Liu C, et al. 2022. N(6)-methyladenosine RNA methyltransferase like 3 inhibits extracellular matrix synthesis of endplate chondrocytes by downregulating sex-determining region Y-Box transcription factor 9 expression under tension. Osteoarthritis and Cartilage 30:613−25

doi: 10.1016/j.joca.2022.01.002
[71]

Sang W, Xue S, Jiang Y, Lu H, Zhu L, et al. 2021. METTL3 involves the progression of osteoarthritis probably by affecting ECM degradation and regulating the inflammatory response. Life Sciences 278:119528

doi: 10.1016/j.lfs.2021.119528
[72]

Xiong X, Xiong H, Peng J, Liu Y, Zong Y. 2025. METTL3 regulates the m6a modification of NEK7 to inhibit the formation of osteoarthritis. Cartilage 16:89−99

doi: 10.1177/19476035231200336
[73]

He Y, Wang W, Xu X, Yang B, Yu X, et al. 2022. Mettl3 inhibits the apoptosis and autophagy of chondrocytes in inflammation through mediating Bcl2 stability via Ythdf1-mediated m6A modification. Bone 154:116182

doi: 10.1016/j.bone.2021.116182
[74]

An X, Wang R, Lv Z, Wu W, Sun Z, et al. 2024. WTAP-mediated m6A modification of FRZB triggers the inflammatory response via the Wnt signaling pathway in osteoarthritis. Experimental & Molecular Medicine 56:156−67

doi: 10.1038/s12276-023-01135-5
[75]

Chen X, Gong W, Shao X, Shi T, Zhang L, et al. 2022. METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Annals of the Rheumatic Diseases 81:87−99

doi: 10.1136/annrheumdis-2021-221091
[76]

Zhou H, Shen X, Yan C, Xiong W, Ma Z, et al. 2022. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Research & Therapy 13:322

doi: 10.1186/s13287-022-03005-9
[77]

Kou R, Li T, Fu C, Jiang D, Wang Y, et al. 2024. Exosome-shuttled FTO from BM-MSCs contributes to cancer malignancy and chemoresistance in acute myeloid leukemia by inducing m6A-demethylation: a nano-based investigation. Environmental Research 244:117783

doi: 10.1016/j.envres.2023.117783
[78]

Ye G, Li J, Yu W, Xie Z, Zheng G, et al. 2023. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Experimental & Molecular Medicine 55:1743−56

doi: 10.1038/s12276-023-01059-0
[79]

Tang Y, Liu Y, Zhu X, Chen Y, Jiang X, et al. 2023. ALKBH5-mediated m6A demethylation of HS3ST3B1-IT1 prevents osteoarthritis progression. iScience 26:107838

doi: 10.1016/j.isci.2023.107838
[80]

Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. 2015. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. Journal of Biological Chemistry 290:20734−42

doi: 10.1074/jbc.R115.656462
[81]

Yang S, Zhou X, Jia Z, Zhang M, Yuan M, et al. 2023. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Molecular Medicine 29:86

doi: 10.1186/s10020-023-00661-2
[82]

Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33:245−54

doi: 10.1038/ng1089
[83]

Guo Q, Li D, Luo X, Yuan Y, Li T, et al. 2021. The regulatory network and potential role of LINC00973-miRNA-mRNA CeRNA in the progression of non-small-cell lung cancer. Frontiers in Immunology 12:684807

doi: 10.3389/fimmu.2021.684807
[84]

Tang Y, Hong F, Ding S, Yang J, Zhang M, et al. 2023. METTL3-mediated m6A modification of IGFBP7-OT promotes osteoarthritis progression by regulating the DNMT1/DNMT3a-IGFBP7 axis. Cell Reports 42:112589

doi: 10.1016/j.celrep.2023.112589
[85]

Parker E, Hofer IMJ, Rice SJ, Earl L, Anjum SA, et al. 2021. Multi-tissue epigenetic and gene expression analysis combined with epigenome modulation identifies RWDD2B as a target of osteoarthritis susceptibility. Arthritis & Rheumatology 73:100−9

doi: 10.1002/art.41473
[86]

Ali SA, Gandhi R, Potla P, Keshavarzi S, Espin-Garcia O, et al. 2020. Sequencing identifies a distinct signature of circulating microRNAs in early radiographic knee osteoarthritis. Osteoarthritis and Cartilage 28:1471−81

doi: 10.1016/j.joca.2020.07.003
[87]

Struys EA. 2013. 2-Hydroxyglutarate is not a metabolite; D-2-hydroxyglutarate and L-2-hydroxyglutarate are! Proceedings of the National Academy of Sciences of the United States of America 110(51):E4939

doi: 10.1073/pnas.1318777110
[88]

Wallace IJ, Worthington S, Felson DT, Jurmain RD, Wren KT, et al. 2017. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences of the United States of America 114:9332−36

doi: 10.1073/pnas.1703856114
[89]

Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, et al. 2023. Loss of epigenetic information as a cause of mammalian aging. Cell 186:305−326.e27

doi: 10.1016/j.cell.2022.12.027
[90]

Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. 2020. Efficient low-cost chromatin profiling with CUT&Tag. Nature Protocols 15:3264−83

doi: 10.1038/s41596-020-0373-x
[91]

Jiang Z, Qi G, He X, Yu Y, Cao Y, et al. 2024. Ferroptosis in osteocytes as a target for protection against postmenopausal osteoporosis. Advanced Science 11:2307388

doi: 10.1002/advs.202307388
[92]

Bittner N, Shi C, Zhao D, Ding J, Southam L, et al. 2024. Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes. Annals of the Rheumatic Diseases 83:1048−59

doi: 10.1136/ard-2023-224945
[93]

Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, et al. 2021. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184(18):4784−4818.e17

doi: 10.1016/j.cell.2021.07.038
[94]

Lin K, Wei L, Wang R, Li L, Song S, et al. 2025. Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1. Cell Metabolism 37:460−476.e8

doi: 10.1016/j.cmet.2024.10.017
[95]

Hosea Blewett HJ. 2008. Exploring the mechanisms behind S-adenosylmethionine (SAMe) in the treatment of osteoarthritis. Critical Reviews in Food Science and Nutrition 48:458−63

doi: 10.1080/10408390701429526
[96]

Shen S, Liang Y, Zhao Y, Hu Z, Huang Y, et al. 2024. Dietary supplementation of vitamin B1 prevents the pathogenesis of osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America 121:e2408160121

doi: 10.1073/pnas.2408160121
[97]

Lin Z, Jiang T, Zheng W, Zhang J, Li A, et al. 2023. N6-methyladenosine (m6A) methyltransferase WTAP-mediated miR-92b-5p accelerates osteoarthritis progression. Cell Communication and Signaling 21:199

doi: 10.1186/s12964-023-01228-8
[98]

Kaur D, Kaur J, Kamal SS. 2018. Diacerein, its beneficial impact on chondrocytes and notable new clinical applications. Brazilian Journal of Pharmaceutical Sciences 54:e17534

doi: 10.1590/s2175-97902018000417534