[1]

Tucker AC, Bresnahan C, John S, Johnson J, Leung CW, et al. 2024. Food (in)security in relation to nutrition (in)security in a national cross-sectional sample of Supplemental Nutrition Assistance Program participants: considerations of an emerging construct. The American Journal of Clinical Nutrition 119(6):1475−84

doi: 10.1016/j.ajcnut.2024.03.020
[2]

Pang X, Sun Y, Kong F, Qiu J, Zhang J. 2019. Advances and perspectives in research of volatile flavor quality of agricultural products. Scientia Agricultura Sinica 52(18):3192−98

doi: 10.3864/j.issn.0578-1752.2019.18.011
[3]

Wang H, Sarkar A, Rahman A, Hossain MS, Memon WH, et al. 2022. Research on the industrial upgrade of vegetable growers in Shaanxi: a cross-regional comparative analysis of experience reference. Agronomy 12(1):38

doi: 10.3390/agronomy12010038
[4]

Adams F, Aidoo R, Mensah JO, Mensah A, Etuah S, et al. 2023. The synergy between farmers' declaration of qualitative and quantitative maize postharvest losses in the transition agroecological zone of Ghana. Journal of Stored Products Research 104:102198

doi: 10.1016/j.jspr.2023.102198
[5]

Suresh BV, Shireesha Y, Kishore TS, Dwivedi G, Haghighi AT, et al. 2023. Natural energy materials and storage systems for solar dryers: State of the art. Solar Energy Materials and Solar Cells 255:112276

doi: 10.1016/j.solmat.2023.112276
[6]

Mujumdar AS, Xiao HW. 2019. Advanced drying technologies for foods. Boca Raton: CRC Press doi: 10.1201/9780367262037

[7]

Kimaro D, Nyangarika A, Kivevele T. 2024. Uncovering socioeconomic insights of solar dryers for sustainable agricultural product preservation: a systematic review. Heliyon 10(23):e40726

doi: 10.1016/j.heliyon.2024.e40726
[8]

Udomkun P, Romuli S, Schock S, Mahayothee B, Sartas M, et al. 2020. Review of solar dryers for agricultural products in Asia and Africa: an innovation landscape approach. Journal of Environmental Management 268:110730

doi: 10.1016/j.jenvman.2020.110730
[9]

Zhou X, Wang S. 2019. Recent developments in radio frequency drying of food and agricultural products: a review. Drying Technology 37:271−86

doi: 10.1080/07373937.2018.1452255
[10]

Osae R, Essilfie G, Alolga RN, Akaba S, Song X, et al. 2020. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. Journal of the Science of Food and Agriculture 100(6):2585−99

doi: 10.1002/jsfa.10284
[11]

Siddiqui SA, Ucak İ, Jain S, Elsheikh W, Ali Redha A, et al. 2024. Impact of drying on techno-functional and nutritional properties of food proteins and carbohydrates - a comprehensive review. Drying Technology 42(4):592−611

doi: 10.1080/07373937.2024.2303580
[12]

Lamidi RO, Jiang L, Pathare PB, Wang YD, Roskilly AP. 2019. Recent advances in sustainable drying of agricultural produce: a review. Applied Energy 233:367−85

doi: 10.1016/j.apenergy.2018.10.044
[13]

Liu J, Xu X, Zhang T, Wang J, Wang R, et al. 2024. Combined effects of low pressure superheated steam drying and vacuum drying on sugar reduction and quality attribute in mango (Mangifera indica L.) slices. International Journal of Food Engineering 20(6):405−17

doi: 10.1515/ijfe-2023-0249
[14]

Onwude DI, Hashim N, Chen G. 2016. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology 57:132−45

doi: 10.1016/j.jpgs.2016.09.012
[15]

Santos PHS, Silva MA. 2008. Retention of vitamin C in drying processes of fruits and vegetables—a review. Drying Technology 26(12):1421−37

doi: 10.1080/07373930802458911
[16]

Jiang DL, Shirkole SS, Ju HY, Niu XX, Xie YK, et al. 2025. An improved infrared combined hot air dryer design and effective drying strategy analysis for sweet potato. LWT 215:117204

doi: 10.1016/j.lwt.2024.117204
[17]

Pai KR, Sindhuja V, Ramachandran PA, Thorat BN. 2021. Mass transfer "Regime" approach to drying. Industrial & Engineering Chemistry Research 60(26):9613−23

doi: 10.1021/acs.iecr.1c01680
[18]

Yao B, Zhang X, Wen X, Zou J. 2015. Developments of variable temperature drying technology for agricultural products at home and abroad. Food Science and Technology 40(07):94−98

[19]

Savitha S, Chakraborty S, Thorat BN. 2022. Microstructural changes in blanched, dehydrated, and rehydrated onion. Drying Technology 40(12):2550−67

doi: 10.1080/07373937.2022.2078347
[20]

Zeng S, Du Z, Lv W, Li D, Su D, et al. 2022. Experimental study on the hygrothermal dynamics of peanut (Arachis hypogaea Linn.) in the process of superposition and variable temperature drying. Drying Technology 40(7):1463−77

doi: 10.1080/07373937.2021.1873359
[21]

Li L, Zhang M, Song X, Wang W, Bhandari B. 2019. Changes in unfrozen water content and dielectric properties during pulse vacuum osmotic dehydration to improve microwave freeze-drying characteristics of Chinese yam. Journal of the Science of Food and Agriculture 99(14):6572−81

doi: 10.1002/jsfa.9938
[22]

Tu Z, Irudayaraj J, Lee Y. 2023. Characterizing spray-dried powders through NIR spectroscopy: effect of two preparation strategies for calibration samples and comparison of two types of NIR spectrometers. Foods 12(3):467

doi: 10.3390/foods12030467
[23]

Tan F, Ye W, Ruan S, Cang H, Zhang Y, et al. 2024. Nondestructive detection of multiple qualities of dried jujube in different storage periods based on hyperspectral imaging combined with deep learning. Infrared Physics & Technology 143:105595

doi: 10.1016/j.infrared.2024.105595
[24]

Zhang L, Liu J, Wei Y, An D, Ning X. 2025. Self-supervised learning-based multi-source spectral fusion for fruit quality evaluation: a case study in mango fruit ripeness prediction. Information Fusion 117:102814

doi: 10.1016/j.inffus.2024.102814
[25]

Xiao Y, Xue Y. 2024. A review on application of microwave in cement life cycle. Renewable and Sustainable Energy Reviews 199:114498

doi: 10.1016/j.rser.2024.114498
[26]

Frabetti ACC, Garnault T, Curto H, Thillier A, Boillereaux L, et al. 2023. Dielectric properties of low moisture foods measured by open-ended coaxial probe and cavity perturbation technique. European Food Research and Technology 249(11):2861−73

doi: 10.1007/s00217-023-04333-7
[27]

Changbandit P, Santalunai S, Thongsopa C, Phahom T. 2024. Identification of water transitions using a combination of moisture sorption characteristics and dielectric properties of different parts of jasmine rice (Oryza sativa). Journal of the Science of Food and Agriculture 104(13):8343−55

doi: 10.1002/jsfa.13669
[28]

Lei D, Xie Y, Jia Z, Sun W, Peng Z, et al. 2024. Dielectric properties of in-shell peanuts with radio frequency and microwave heating treatment and RF heating performance. Postharvest Biology and Technology 211:112800

doi: 10.1016/j.postharvbio.2024.112800
[29]

Zada M, Basir A, Lee B, Yoo H. 2024. Improving capacitance measurements of aqueous solutions with alpha and beta corrections in a parallel-plate capacitor system: Insights into dielectric properties. Journal of Food Engineering 364:111798

doi: 10.1016/j.jfoodeng.2023.111798
[30]

Sun J, Zhang G, Mao H, Wu X, Yang N, et al. 2016. Non-destructive moisture content detection of corn leaves based on dielectric properties and regression algorithm. Transactions of the Chinese Society for Agricultural Machinery 47(04):257−264,279

doi: 10.6041/j.issn.1000-1298.2016.04.034
[31]

Lin B, Wang S. 2020. Dielectric properties, heating rate, and heating uniformity of wheat flour with added bran associated with radio frequency treatments. Innovative Food Science & Emerging Technologies 60:102290

doi: 10.1016/j.ifset.2020.102290
[32]

Miyakawa M, Kanamori S, Hagihara K, Itagaki A, Nakamura T, et al. 2021. Cylindrical resonator-type microwave heating reactor with real-time monitoring function of dielectric property applied to drying processes. Industrial & Engineering Chemistry Research 60:9119−27

doi: 10.1021/acs.iecr.1c00569
[33]

Fan J, Sun T, Wu J, Zheng L, Tang H. 2024. Analysis of dielectric properties of rice during microwave drying process. Cereal Chemistry 101(6):1273−82

doi: 10.1002/cche.10825
[34]

Li M, Tian Y, Jiang L, Xu J, Li R, et al. 2024. Developing effective radio frequency drying processes for tiger nuts: dynamic analysis of moisture state, dielectric properties and quality. Journal of Food Engineering 375:112058

doi: 10.1016/j.jfoodeng.2024.112058
[35]

Cheng S, Su W, Yuan L, Tan M. 2021. Recent developments of drying techniques for aquatic products: with emphasis on drying process monitoring with innovative methods. Drying Technology 39:1577−97

doi: 10.1080/07373937.2021.1895205
[36]

Merivaara A, Kekkonen J, Monola J, Koivunotko E, Savolainen M, et al. 2022. Near-infrared analysis of nanofibrillated cellulose aerogel manufacturing. International Journal of Pharmaceutics 617:121581

doi: 10.1016/j.ijpharm.2022.121581
[37]

Kang R, Ma T, Tsuchikawa S, Inagaki T, Chen J, et al. 2024. Non-destructive near-infrared moisture detection of dried goji (Lycium barbarum L.) berry. Horticulturae 10(3):302

doi: 10.3390/horticulturae10030302
[38]

de Medeiros DT, Ramalho FMG, Batista FG, Mascarenhas ARP, Chaix G, et al. 2023. Water desorption monitoring of cellulose pulps by NIR spectroscopy. Industrial Crops and Products 192:115989

doi: 10.1016/j.indcrop.2022.115989
[39]

Hashimoto A, Suehara KI, Kameoka T. 2024. Development of a simultaneous quantification method for multiple modes of nitrogen in leaf models using near-infrared spectroscopic measurement. Sensors 24(4):1160

doi: 10.3390/s24041160
[40]

Kapoor R, Malvandi A, Feng H, Kamruzzaman M. 2022. Real-time moisture monitoring of edible coated apple chips during hot air drying using miniature NIR spectroscopy and chemometrics. LWT 154:112602

doi: 10.1016/j.lwt.2021.112602
[41]

Jiang Z, Jin K, Zhong L, Zheng Y, Shao Q, et al. 2023. Near-infrared spectroscopy combined with machine learning for rapid identification of Atractylodis rhizoma decoction pieces. Industrial Crops and Products 197:116579

doi: 10.1016/j.indcrop.2023.116579
[42]

Wokadala OC, Human C, Willemse S, Emmambux NM. 2020. Rapid non-destructive moisture content monitoring using a handheld portable Vis–NIR spectrophotometer during solar drying of mangoes (Mangifera indica L.). Journal of Food Measurement and Characterization 14(2):790−98

doi: 10.1007/s11694-019-00327-w
[43]

Aoki H, Hattori Y, Sasaki T, Otsuka M. 2022. Comparative study on the real-time monitoring of a fluid bed drying process of extruded granules using near-infrared spectroscopy and audible acoustic emission. International Journal of Pharmaceutics 619:121689

doi: 10.1016/j.ijpharm.2022.121689
[44]

Ikeda C, Zhou G, Lee YC, Chouzouri G, Howell L, et al. 2022. Application of online NIR spectroscopy to enhance process understanding and enable in-process control testing of secondary drying process for a spray-dried solid dispersion intermediate. Journal of Pharmaceutical Sciences 111(9):2540−51

doi: 10.1016/j.xphs.2022.04.009
[45]

Johnson JB, El Orche A, Mani JS, Aït-Kaddour A, Walsh KB, et al. 2023. Prediction of phytochemical constituents in cayenne pepper using MIR and NIR spectroscopy. Applied Sciences 13(8):5143

doi: 10.3390/app13085143
[46]

Rong Y, Riaz T, Lin H, Wang Z, Chen Q, et al. 2024. Application of visible near-infrared spectroscopy combined with colorimetric sensor array for the aroma quality evaluation in tencha drying process. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304:123385

doi: 10.1016/j.saa.2023.123385
[47]

Malvandi A, Kapoor R, Feng H, Kamruzzaman M. 2022. Non-destructive measurement and real-time monitoring of apple hardness during ultrasonic contact drying via portable NIR spectroscopy and machine learning. Infrared Physics & Technology 122:104077

doi: 10.1016/j.infrared.2022.104077
[48]

Erdem T, Özlüoymak ÖB, Kizildag N. 2018. Color change analysis of dried slices during hot air drying. Fresenius Environmental Bulletin 27:6064−72

[49]

Aghbashlo M, Hosseinpour S, Ghasemi-Varnamkhasti M. 2014. Computer vision technology for real-time food quality assurance during drying process. Trends in Food Science & Technology 39(1):76−84

doi: 10.1016/j.jpgs.2014.06.003
[50]

Zhu G, Raghavan GSV, Xu W, Pei Y, Li Z. 2023. Online machine vision-based modeling during cantaloupe microwave drying utilizing extreme learning machine and artificial neural network. Foods 12(7):1372

doi: 10.3390/foods12071372
[51]

Guo J, Liu Y, Lei D, Peng Z, Mowafy S, et al. 2025. Combining DeepLabV3+ and LSTM for intelligent drying strategy optimization in fruits and vegetables based on appearance quality: a case study of Pleurotus eryngii. Computers and Electronics in Agriculture 230:109929

doi: 10.1016/j.compag.2025.109929
[52]

Zang YZ, Yao XD, Cao YX, Niu YB, Liu H, Xiao HW, et al. 2021. Real-time detection system for moisture content and color change in jujube slices during drying process. Journal of Food Processing and Preservation 45(6):e15539

doi: 10.1111/jfpp.15539
[53]

Xu X, Liu J, Zhang T, Wang R, Xu Q, et al. 2025. Online detection of potato drying stages based on improved YOLOv7-tiny model. Drying Technology 43(4):679−89

doi: 10.1080/07373937.2025.2450700
[54]

Chakravartula SSN, Bandiera A, Nardella M, Bedini G, Ibba P, et al. 2023. Computer vision-based smart monitoring and control system for food drying: a study on carrot slices. Computers and Electronics in Agriculture 206:107654

doi: 10.1016/j.compag.2023.107654
[55]

Wang D, Wang Y, Niu Y, Zhang W, Li C, et al. 2025. Development of an intelligent control system of high efficiency and online monitoring for hot air drying of peony flowers. Journal of Food Science 90(1):e17652

doi: 10.1111/1750-3841.17652
[56]

Li X, Liu Y, Gao Z, Xie Y, Wang H. 2021. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control. Journal of Food Engineering 292:110253

doi: 10.1016/j.jfoodeng.2020.110253
[57]

Herve Q, Ipek N, Verwaeren J, De Beer T. 2024. Automated particle inspection of continuously freeze-dried products using computer vision. International Journal of Pharmaceutics 664:124629

doi: 10.1016/j.ijpharm.2024.124629
[58]

Sampson DJ, Chang YK, Vasantha Rupasinghe HP, Zaman QUZ. 2014. A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. Journal of Food Engineering 127:49−57

doi: 10.1016/j.jfoodeng.2013.11.016
[59]

Onwude DI, Hashim N, Abdan K, Janius R, Chen G. 2018. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying. Journal of the Science of Food and Agriculture 98(4):1310−24

doi: 10.1002/jsfa.8595
[60]

Xu Y, Yang X, Zhang J, Zhou X, Luo L, et al. 2024. Visual analysis of sea buckthorn fruit moisture content based on deep image processing technology. Food Chemistry 453:139558

doi: 10.1016/j.foodchem.2024.139558
[61]

Nagvanshi S, Venkata SK, Goswami TK. 2021. Study of color kinetics of banana (Musa cavendish) under microwave drying by application of image analysis. Food Science and Technology International 27(7):660−73

doi: 10.1177/1082013220981334
[62]

Udomkun P, Nagle M, Argyropoulos D, Wiredu AN, Mahayothee B, et al. 2017. Computer vision coupled with laser backscattering for non-destructive colour evaluation of papaya during drying. Journal of Food Measurement and Characterization 11(4):2142−50

doi: 10.1007/s11694-017-9598-y
[63]

Jia Z, Liu Y, Xiao H. 2024. Deep learning prediction of moisture and color kinetics of apple slices by long short-term memory as affected by blanching and hot-air drying conditions. Processes 12(8):1724

doi: 10.3390/pr12081724
[64]

Liu ZL, Wang SY, Huang XJ, Zhang XH, Xie L, et al. 2025. Quality changes and shelf-life prediction of far-infrared radiation heating assisted pulsed vacuum dried blueberries by SSA-ELM. Food Chemistry 473:143060

doi: 10.1016/j.foodchem.2025.143060
[65]

da Silva Ferreira MV, Ahmed MW, Oliveira M, Sarang S, Ramsay S, et al. 2025. AI-enabled optical sensing for smart and precision food drying: techniques, applications and future directions. Food Engineering Reviews 17(1):75−103

doi: 10.1007/s12393-024-09388-0
[66]

Martynenko A, Misra NN. 2020. Machine learning in drying. Drying Technology 38:596−609

doi: 10.1080/07373937.2019.1690502
[67]

Sun Q, Zhang M, Mujumdar AS. 2019. Recent developments of artificial intelligence in drying of fresh food: a review. Critical Reviews in Food Science and Nutrition 59(14):2258−75

doi: 10.1080/10408398.2018.1446900
[68]

Nadian MH, Abbaspour-Fard MH, Martynenko A, Golzarian MR. 2017. An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system. Computers and Electronics in Agriculture 137:138−49

doi: 10.1016/j.compag.2017.04.001
[69]

Nadian MH, Abbaspour-Fard MH, Sadrnia H, Golzarian MR, Tabasizadeh M, et al. 2017. Improvement of kiwifruit drying using computer vision system (CVS) and ALM clustering method. Drying Technology 35(6):709−23

doi: 10.1080/07373937.2016.1208665
[70]

Hosseinpour S, Martynenko A. 2023. An adaptive fuzzy logic controller for intelligent drying. Drying Technology 41(7):1110−32

doi: 10.1080/07373937.2022.2119996
[71]

Cao Y, Yao X, Zang Y, Niu Y, Xiao H, et al. 2022. Real-time monitoring system for quality monitoring of jujube slice during drying process. International Journal of Agricultural and Biological Engineering 15(3):234−41

doi: 10.25165/j.ijabe.20221503.5772
[72]

Taghinezhad E, Szumny A, Figiel A. 2023. The application of hyperspectral imaging technologies for the prediction and measurement of the moisture content of various agricultural crops during the drying process. Molecules 28(7):2930

doi: 10.3390/molecules28072930
[73]

Yang S, Cao Y, Li C, Castagnini JM, Barba FJ, et al. 2024. Enhancing grain drying methods with hyperspectral imaging technology: a visualanalysis. Current Research in Food Science 8:100695

doi: 10.1016/j.crfs.2024.100695
[74]

Sun J, Shi X, Zhang H, Xia L, Guo Y, et al. 2019. Detection of moisture content in peanut kernels using hyperspectral imaging technology coupled with chemometrics. Journal of Food Process Engineering 42(7):e13263

doi: 10.1111/jfpe.13263
[75]

Lee D, Lohumi S, Cho BK, Lee SH, Jung H. 2020. Determination of drying patterns of radish slabs under different drying methods using hyperspectral imaging coupled with multivariate analysis. Foods 9(4):484

doi: 10.3390/foods9040484
[76]

Nghia NDT, Dusabumuremyi JC, Saeys W. 2018. Cross-polarized VNIR hyperspectral reflectance imaging for non-destructive quality evaluation of dried banana slices, drying process monitoring and control. Journal of Food Engineering 238:85−94

doi: 10.1016/j.jfoodeng.2018.06.013
[77]

Ren Y, Sun DW. 2022. Monitoring of moisture contents and rehydration rates of microwave vacuum and hot air dehydrated beef slices and splits using hyperspectral imaging. Food Chemistry 382:132346

doi: 10.1016/j.foodchem.2022.132346
[78]

Xu Y, Wang Y, Cheng P, Zhang C, Huang Y. 2024. A lightweight neural network approach for identifying geographical origins and predicting nutrient contents of dried wolfberries based on hyperspectral data. Journal of Food Measurement and Characterization 18(9):7519−32

doi: 10.1007/s11694-024-02745-x
[79]

Netto JMS, Honorato FA, Azoubel PM, Kurozawa LE, et al. 2021. Evaluation of melon drying using hyperspectral imaging technique in the near infrared region. LWT 143:111092

doi: 10.1016/j.lwt.2021.111092
[80]

Yu P, Huang M, Zhang M, Yang B. 2019. Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying. Applied Sciences 9(2):331

doi: 10.3390/app9020331
[81]

Yan K, Tan M, Li M, Duan L, Gao L, et al. 2024. Prediction of moisture variation during fish fillet drying using hyperspectral imaging combined with deep learning technology. Drying Technology 43:376−86

doi: 10.1080/07373937.2024.2440011
[82]

Liu Q, Jiang X, Wang F, Fan S, Zhu B, et al. 2025. Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters. Food Chemistry 467:141999

doi: 10.1016/j.foodchem.2024.141999
[83]

Cui P, Yu Y, Zhao J, Miao P, Xue Q, et al. 2023. Hyperspectral imaging combined with artificial intelligence techniques to explore the drying behavior of natural Lonicerae Japonicae Flos extracts. Measurement 218:113246

doi: 10.1016/j.measurement.2023.113246
[84]

Achata EM, Esquerre C, Ojha KS, Tiwari BK, O'Donnell CP. 2021. Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky. Innovative Food Science & Emerging Technologies 69:102611

doi: 10.1016/j.ifset.2021.102611
[85]

Wang J, Wang W, Xu W, An H, Ma Q, et al. 2024. Fusing hyperspectral imaging and electronic nose data to predict moisture content in Penaeus vannamei during solar drying. Frontiers in Nutrition 11:122031

doi: 10.3389/fnut.2024.1220131
[86]

Adesokan M, Otegbayo B, Alamu EO, Olutoyin MA, Maziya-Dixon B. 2024. Evaluating the dry matter content of raw yams using hyperspectral imaging spectroscopy and machine learning. Journal of Food Composition and Analysis 135:106692

doi: 10.1016/j.jfca.2024.106692