| [1] |
Gao RB, Lu RC, Qiu XY, Wang LK, Zhang K, et al. 2023. Detection of putative mutation I873S in the sodium channel of Megalurothrips usitatus (Bagnall) which may be associated with pyrethroid resistance. |
| [2] |
Hou Q, Yuan L, Jin H, Yan H, Li F, et al. 2023. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Megalurothrips usitatus (thysanoptera: thripidae). |
| [3] |
Wu J, Yuan L, Jin H, Zhang K, Li F, et al. 2023. Double sodium channel mutation, I265T/L1014F, is possibly related to pyrethroid-resistant in Thrips palmi. |
| [4] |
Gao R, Ma S, Geng J, Zhang K, Xian L, et al. 2024. Functional characterization of double mutations T929I/K1774N in the voltage-gated sodium channel of Megalurothrips usitatus (Bagnall) related to pyrethroid resistance. |
| [5] |
Li F, Gong X, Yuan L, Pan X, Jin H, et al. 2022. Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. |
| [6] |
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, et al. 2020. Pest categorisation of Liriomyza bryoniae. |
| [7] |
Singh Yadav SP, Pokhrel S, Poudel A, Devkota S, Katel S, et al. 2024. Evaluation of different insecticides against Liriomyza sativae (Diptera: Agromyzidae) on cucumber plants. |
| [8] |
Wang YC, Chang YW, Gong WR, Hu J, Du YZ. 2024. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. |
| [9] |
Bass C, Denholm I, Williamson MS, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. |
| [10] |
Criniti A, Mazzoni E, Cassanelli S, Cravedi P, Tondelli A, et al. 2008. Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super-kdr based mechanisms in Italian strains of the peach potato aphid, Myzus persicae (Sulzer). |
| [11] |
Meng J, Zhang C, Chen X, Cao Y, Shang S. 2014. Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. |
| [12] |
Xu X, Ding Q, Wang X, Wang R, Ullah F, et al. 2022. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. |
| [13] |
Sain SK, Monga D, Hiremani NS, Nagrale DT, Kranthi S, et al. 2021. Evaluation of bioefficacy potential of entomopathogenic fungi against the whitefly (Bemisia tabaci Genn.) on cotton under polyhouse and field conditions. |
| [14] |
Erdogan C, Velioglu AS, Gurkan MO, Denholm I, Moores GD. 2021. Detection of resistance to pyrethroid and neonicotinoid insecticides in the greenhouse whitefly, Trialeurodes vaporariorum (Westw.) (Hemiptera: Aleyrodidae). |
| [15] |
Wang F, Liu J, Chen P, Li HY, Ma JJ, et al. 2020. Bemisia tabaci (Hemiptera: Aleyrodidae) Insecticide Resistance in Shandong Province, China. |
| [16] |
Xie W, Liu Y, Wang S, Wu Q, Pan H, et al. 2014. Sensitivity of Bemisia Tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage. |
| [17] |
Morato RP, do Nascimento DV, Oliveira GM, Bermúdez NC, Lira R, et al. 2024. Indoxacarb, cyantraniliprole, and Euborellia annulipes as options for integrated control of diamondback moth. |
| [18] |
Calvin W, Palumbo JC, Anderson T. 2024. Chlorantraniliprole resistance associated with diamondback moth (Lepidoptera: Plutellidae) outbreaks in Arizona Brassica crops. |
| [19] |
Wang D, Lv W, Yuan Y, Zhang T, Teng H, et al. 2022. Effects of insecticides on malacostraca when managing diamondback moth (Plutella xylostella) in combination planting-rearing fields. |
| [20] |
Vincent C, Hallman G, Panneton B, Fleurat-Lessard F. 2003. Management of Agricultural Insects with Physical Control Methods. |
| [21] |
Xian L, Jin H, Hou Q, Peng X, Ning H, et al. 2024. Cloning and expression analysis of visual genes of Megalurothrips usitatus. |
| [22] |
Jin HF, Yuan LL, Wang LK, Li F, Wu SY. 2024. Ultraviolet-absorbing film both reduces major pest abundance (Thripidea & Diptera) and promotes crop yield for greenhouse cowpea Vigna unguiculata. |
| [23] |
Li F, Jin H, Yao Z, Xian L, Liu K, et al. 2024. A new optical practice as an effective alternative to insecticides for controlling highly resistant thrips. |
| [24] |
Ali A, Rashid MA, Huang QY, Lei CL. 2016. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). |
| [25] |
Antignus Y, Mor N, Joseph BR, Lapidot M, Cohen S. 1996. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. |
| [26] |
Wang L, Chen J, Zhao C, Jin H, Li F, et al. 2023. Production and quality of Hami melon (Cucumis melo var. reticulatus) and pest population of Thrips palmi in UV-blocking film greenhouses. |
| [27] |
Briscoe AD. 2008. Reconstructing the ancestral butterfly eye: focus on the opsins. |
| [28] |
Shi L, Qiu L, Jiang Z, Xie Z, Dong M, et al. 2023. The influences of green light on locomotion, growth and reproduction in the brown planthopper Nilaparvata lugens. |
| [29] |
Jiang Y, Huang Q, Wei G, Gong Z, Li T, et al. 2023. Effects of yellow and green light stress on emergence, feeding and mating of Anomala corpulenta Motschulsky and Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). |
| [30] |
Wang Y, Chang Y, Zhang S, Jiang X, Yang B, et al. 2022. Comparison of phototactic behavior between two migratory pests, Helicoverpa armigera and Spodoptera frugiperda. |
| [31] |
Li W, Quan L, Dong Y, Yao Q, Xu S, et al. 2021. Effects of white led light on reproduction of Conopomorpha sinensis (Lepidoptera: Gracillariidae) and its field application. |
| [32] |
Yun CN, Maeng IS, Yang SH, Hwang UJ, Kim KN, et al. 2023. Evaluating the phototactic behavior responses of the diamondback moth, Plutella xylostella, to some different wavelength LED lights in laboratory and field. |
| [33] |
Weber DC, Morrison WR, Khrimian A, Rice KB, Leskey TC, et al. 2017. Chemical ecology of Halyomorpha halys: discoveries and applications. |
| [34] |
You S, You M, Niu D. 2024. Identification of floral volatiles from Fagopyrum esculentum that attract Cotesia vestalis with potentially better biocontrol efficacy against Plutella xylostella. |
| [35] |
Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM. 2011. The role of allelopathy in agricultural pest management. |
| [36] |
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. 2021. Latest developments in insect sex pheromone research and its application in agricultural pest management. |
| [37] |
Liu P, Qin Z, Feng M, Zhang L, Huang X, et al. 2020. The male-produced aggregation pheromone of the bean flower thrips Megalurothrips usitatus in China: identification and attraction of conspecifics in the laboratory and field. |
| [38] |
Xiu C, Pan H, Zhang F, Luo Z, Bian L, et al. 2024. Identification of aggregation pheromones released by the stick tea thrips (Dendrothrips minowai) larvae and their application for controlling thrips in tea plantations. Pest management science 80(6):2528−38 |
| [39] |
Nakashima Y, Ida TY, Powell W, Pickett JA, Birkett MA, et al. 2016. Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. |
| [40] |
Tembo Y, Mkindi AG, Mkenda PA, Mpumi N, Mwanauta R, et al. 2018. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. |
| [41] |
Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR. 2021. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. |
| [42] |
Balaško MK, Neral K, Nađ B, Bažok R, Drmić Z, et al. 2021. Azadirachtin efficacy in Colorado potato beetle and western flower thrips control. |
| [43] |
McGuire AV, Northfield TD. 2020. Tropical Occurrence and Agricultural Importance of Beauveria bassiana and Metarhizium anisopliae. |
| [44] |
Uma Devi K, Padmavathi J, Uma Maheswara Rao C, Khan AAP, Mohan MC. 2008. A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). |
| [45] |
Sharma A, Sharma S, Yadav PK. 2023. Entomopathogenic fungi and their relevance in sustainable agriculture: a review. |
| [46] |
Yang B, Du C, Ali S, Wu J. 2020. Molecular characterization and virulence of fungal isolates against the bean flower thrips, Megalurothrips usitatus Bagnall (Thysanoptera: Thripidae). |
| [47] |
Swathy K, Parmar MK, Vivekanandhan P. 2024. Biocontrol efficacy of entomopathogenic fungi Beauveria bassiana conidia against agricultural insect pests. |
| [48] |
Akutse KS, Khamis FM, Ambele FC, Kimemia JW, Ekesi S, et al. 2020. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). |
| [49] |
Shehzad M, Tariq M, Mukhtar T, Gulzar A. 2021. On the virulence of the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). |
| [50] |
Sumalatha BV, Selvaraj K, Poornesha B, Ramanujam B. 2020. Pathogenicity of entomopathogenic fungus Isaria fumosorosea on rugose spiralling whitefly Aleurodicus rugioperculatus and its effect on parasitoid Encarsia guadeloupae. |
| [51] |
Chen X, Sun L, Zhang YX, Zhao LL, Lin JZ. 2020. Differing infection of Isaria fumosorosea (Wize) Brown & Smith in an aphid (Myzus persicae [Sulzer]) and predatory mite (Neoseiulus cucumeris [Oudemans]) under a scanning electron microscope. |
| [52] |
Liu Z, Liu FF, Li H, Zhang WT, Wang Q, et al. 2022. Virulence of the bio-control fungus Purpureocillium lilacinum against Myzus persicae (Hemiptera: Aphididae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). |
| [53] |
Panyasiri C, Supothina S, Veeranondha S, Chanthaket R, Boonruangprapa T, et al. 2022. Control efficacy of entomopathogenic fungus Purpureocillium lilacinum against chili thrips (Scirtothrips dorsalis) on Chili Plant. |
| [54] |
Poveda J. 2021. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. |
| [55] |
Xia M, Munir S, Li Y, Ahmed A, He P, et al. 2024. Bacillus subtilis YZ-1 surfactins are involved in effective toxicity against agricultural pests. |
| [56] |
Komagata Y, Sekine T, Oe T, Kakui S, Yamanaka S. 2024. Simultaneous use of Beauveria bassiana and Bacillus subtilis-based biopesticides contributed to dual control of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and tomato powdery mildew without antagonistic interactions. |
| [57] |
Gupta R, Keppanan R, Leibman-Markus M, Matveev S, Rav-David D, et al. 2024. Bacillus thuringiensis promotes systemic immunity in tomato, controlling pests and pathogens and promoting yield. |
| [58] |
Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. |
| [59] |
Amarathunga DC, Parry H, Grundy J, Dorin A. 2024. A predator–prey population dynamics simulation for biological control of Frankliniella occidentalis (Western Flower Thrips) by Orius laevigatus in strawberry plants. |
| [60] |
Mouratidis A, de Lima AP, Dicke M, Messelink GJ. 2022. Predator-prey interactions and life history of Orius laevigatus and O. majusculus feeding on flower and leaf-inhabiting thrips. |
| [61] |
Chi Y, Yu C, Feng M, Shu K, Zhu Y, et al. 2024. Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity. |
| [62] |
Summerfield A, Buitenhuis R, Jandricic S, Scott-Dupree CD. 2024. Laboratory investigations on the potential efficacy of biological control agents on two thrips species, onion thrips (Thrips tabaci Lindeman) and Western Flower Thrips (Frankliniella occidentalis (Pergande)). |
| [63] |
Dalir S, Hajiqanbar H, Fathipour Y, Khanamani M. 2021. A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. |
| [64] |
Mahendran P, Radhakrishnan B. 2019. Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), a potential predator of the tea thrips, Scirtothrips bispinosus Bagnall in south Indian tea plantations. |
| [65] |
Kumar V, Kakkar G, McKenzie CL, Seal DR, Osborne LS. 2013. An overview of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) biology, distribution and management. In Weed and pest control-conventional and new challenges, eds. Soloneski S, Larramendy M. UK: IntechOpen. pp. 53−77 doi: 10.5772/55045 |
| [66] |
Stopar K, Trdan S, Bartol T. 2020. Thrips and natural enemies through text data mining and visualization. |
| [67] |
Yang L , Shao Y , Li F , Chen DX , Li FY, et al. 2021. Advances on biological control of thrips pests. |
| [68] |
Nyasani JO, Meyhöfer R, Subramanian S, Poehling HM. 2013. Seasonal abundance of western flower thrips and its natural enemies in different French bean agroecosystems in Kenya. |
| [69] |
Loomans AJM. 2006. Exploration for hymenopterous parasitoids of thrips. Bulletin of Insectology 59:69−83 |
| [70] |
Cox PD, Matthews L, Jacobson RJ, Cannon R, MacLeod A, et al. 2006. Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. |
| [71] |
Manandhar R, Wright MG. 2015. Enhancing biological control of corn earworm, Helicoverpa zea and thrips through habitat management and inundative release of Trichogramma pretiosum in corn cropping systems. |
| [72] |
Jyothi Sara J. 2014. Biotic agents for the management of American serpentine leaf miner, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). Thesis. Kerala Agricultural University (KAU), Vellanikkara, India. pp. 1−188 |
| [73] |
Weintraub PG, Scheffer SJ, Visser D, Valladares G, Soares Correa A, et al. 2017. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): understanding its pest status and management globally. |
| [74] |
Ridland PM, Umina PA, Pirtle EI, Hoffmann AA. 2020. Potential for biological control of the vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae), in Australia with parasitoid wasps. |
| [75] |
Ho TTG, Ueno T. 2002. Biology of Hemiptarsenus varicornis (Hymenoptera: Eulophidae), a parasitoid wasp of the leafminer Liriomyza trifolii (Diptera: Agromyzidae). |
| [76] |
Cheng XQ, Cao FQ, Zhang YB, Guo JY, Wan FH, et al. 2017. Life history and life table of the host-feeding parasitoid Hemiptarsenus varicornis (Hymenoptera: Eulophidae). |
| [77] |
Xuan JL, Liu WX, Zhang YB, Cheng XQ, Guo JY, et al. 2018. Interactions between Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae), two parasitoids of agromyzid leafminers. |
| [78] |
Foba CN, Lagat ZO, Gitonga LM, Akutse KS, Fiaboe KKM. 2015. Interaction between Phaedrotoma scabriventris nixon and Opius dissitus muesebeck (Hymenoptera: Braconidae): endoparasitoids of liriomyza leafminer. |
| [79] |
Du SJ, Ye FY, Xu SY, Wan WJ, Guo J, et al. 2023. Thelytokous Diglyphus wani: a more promising biological control agent against agromyzid leafminers than its arrhenotokous counterpart. |
| [80] |
Xing Z, Zhang L, Wu S, Yi H, Gao Y, et al. 2017. Niche comparison among two invasive leafminer species and their parasitoid Opius biroi: implications for competitive displacement. |
| [81] |
Wang T, Zhang P, Ma C, Yasir Ali M, Gao G, et al. 2021. Is Orius sauteri poppius a promising biological control agent for walnut aphids? An assessment from the laboratory to field. |
| [82] |
Lillo Is, Perez-Bañón C, Rojo S. 2021. Life cycle, population parameters, and predation rate of the hover fly Eupeodes corollae fed on the aphid Myzus persicae. |
| [83] |
Pekas A, De Smedt L, Verachtert N, Boonen S. 2023. The brown lacewing Micromus angulatus: a new predator for the augmentative biological control of aphids. |
| [84] |
Delgado-Ramírez CS, Salas-Araiza MD, Martínez-Jaime OA, Guzmán-Mendoza R, Flores-Mejia S. 2019. Predation capability of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) feeding of Melanaphis sacchari (Hemiptera: Aphididae). |
| [85] |
Mohammed AA. 2018. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. |
| [86] |
Boulanger FX, Jandricic S, Bolckmans K, Wäckers FL, Pekas A. 2019. Optimizing aphid biocontrol with the predator Aphidoletes aphidimyza, based on biology and ecology. |
| [87] |
Fidelis EG, das Graças do Carmo D, Santos AA, de Sá Farias E, da Silva RS, et al. 2018. Coccinellidae, syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: A case study on cabbage crops. |
| [88] |
Aparicio Y, Riudavets J, Gabarra R, Agustí N, Rodríguez-Gasol N, et al. 2021. Can Insectary plants enhance the presence of natural enemies of the green peach aphid (Hemiptera: Aphididae) in Mediterranean Peach Orchards? |
| [89] |
Woolley VC, Tembo YLB, Ndakidemi B, Obanyi JN, Arnold SEJ, et al. 2021. The diversity of aphid parasitoids in East Africa and implications for biological control. |
| [90] |
Alvarez-Baca JK, Alfaro-Tapia A, Lavandero B, Le Lann C, Van Baaren J. 2020. Suitability and profitability of a cereal aphid for the Parasitoid Aphidius platensis in the context of conservation biological control of Myzus persicae in orchards. |
| [91] |
Wang SY, Wang BL, Yan GL, Liu YH, Zhang DY, et al. 2020. Temperature-dependent demographic characteristics and control potential of Aphelinus asychis reared from Sitobion avenae as a biological control agent for Myzus persicae on chili peppers. |
| [92] |
Lahiri S, Ni X, Buntin GD, Toews MD. 2020. Parasitism of Melanaphis sacchari (Hemiptera: Aphididae) by Lysiphlebus testaceipes (Hymenoptera: Braconidae) in the greenhouse and field. |
| [93] |
Di N, Zhu Z, Harwood JD, Xu Z, Wang S, et al. 2022. Fitness of Frankliniella occidentalis and Bemisia tabaci on three plant species pre-inoculated by Orius sauteri. |
| [94] |
Cardoso AC, Marcossi Í, Fonseca MM, Kalile MO, Francesco LS, et al. 2025. A predatory mite as potential biological control agent of Bemisia tabaci on tomato plants. |
| [95] |
Han GD, Su J, Zhang K, Chen J, Zhang JP. 2020. The predatory mite Neoseiulus bicaudus (Mesostigmata: Phytoseiidae), a promising biocontrol agent of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). |
| [96] |
Canassa VF, Marchi-Werle L, Schlick-Souza EC, Fernandes da Silva I, Lopes Baldin EL. 2024. Exploring the potential of Delphastus davidsoni (Coleoptera: Coccinellidae) in the biological control of Bemisia tabaci MEAM 1 (Hemiptera: Aleyrodidae). |
| [97] |
Rehman H. 2020. Use of Chrysoperla carnea larvae to control whitefly (Aleyrodidea: Hemiptera) on tomato plant in greenhouse. |
| [98] |
Barbosa MFC, Poletti M, Poletti EC. 2019. Functional response of Amblyseius tamatavensis Blommers (Mesostigmata: Phytoseiidae) to eggs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on five host plants. |
| [99] |
Kumar V, Mehra L, McKenzie CL, Osborne LS. 2020. Functional response and prey stage preference of Delphastus catalinae and D. pallidus (Coleoptera: Coccinellidae) on Bemisia tabaci (Hemiptera: Aleyrodidae). |
| [100] |
Vandervoet TF, Ellsworth PC, Carrière Y, Naranjo SE. 2018. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. |
| [101] |
Moerkens R, Janssen D, Brenard N, Reybroeck E, del Mar Tellez M, et al. 2020. Simplified modelling enhances biocontrol decision making in tomato greenhouses for three important pest species. |
| [102] |
Yang S, Dou W, Li M, Wang Z, Chen G, et al. 2022. Flowering agricultural landscapes enhance parasitoid biological control to Bemisia tabaci on tomato in south China. |
| [103] |
Ou D, Ren LM, Liu Y, Ali S, Wang XM, et al. 2019. Compatibility and efficacy of the Parasitoid Eretmocerus hayati and the entomopathogenic fungus Cordyceps javanica for biological control of whitefly Bemisia tabaci. |
| [104] |
Demers C, Dumont F, Jandricic S, McCreary C, Labbé RM. 2024. Bemisia tabaci (Gennadius), sweet potato whitefly / Aleurode du tabac and Trialeurodes vaporariorum (Westwood), greenhouse whitefly / Aleurode des serres (Hemiptera: Aleyrodidae). In Biological Control Programmes in Canada, 2013−2023, eds. Vankosky MA, Martel V. Canada: CAB International. pp.143−55 doi: 10.1079/9781800623279.0014 |
| [105] |
Tuan SJ, Yeh CC, Atlihan R, Chi H. 2016. Linking life table and predation Rate for biological control: a comparative study of Eocanthecona furcellata (Hemiptera: Pentatomidae) fed on Spodoptera litura (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Plutellidae). |
| [106] |
Zhang P, Zhou Y, Qin D, Chen J, Zhang Z. 2022. Metabolic changes in larvae of predator Chrysopa sinica fed on azadirachtin-treated Plutella xylostella Larvae. |
| [107] |
Yuliadhi KA, Supartha IW, Wijaya IN, Pudjianto P, Nurmansyah A, et al. 2021. The preference and functional response of Sycanus aurantiacus (Hemiptera: Heteroptera: Reduviidae) on three prey types in laboratory conditions. |
| [108] |
Ur Rehman S, Jiang X, Saleem M, Zhou X, Chen B, et al. 2024. Demography and predatory potential of Orius strigicollis on eggs of Plutella xylostella at two temperatures. |
| [109] |
Silva-Torres CSA, Pontes IVAF, Torres JB, Barros R. 2010. New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. |
| [110] |
Nam H, Kwon M, Ramasamy S, Kim J. 2022. Identification of two diamondback moth parasitoids, Diadegma fenestrale and Diadegma semiclausum, using LAMP for application in biological control. |
| [111] |
Munir S. 2019. Contributions to the biology of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Thesis. University of Alberta, US. pp. 1−185 |
| [112] |
Cock C, Mason PG, Haye T, Cappuccino N. 2021. Determining the host range of Diadromus collaris (Gravenhorst) (Hymenoptera: Ichneumonidae), a candidate biological control agent for diamondback moth Plutella xylostella linnaeus (Lepidoptera: Plutellidae) in Canada. |
| [113] |
Zolfagharian M, Saeedizadeh A, Abbasipour H. 2016. Efficacy of two entomopathogenic nematode species as potential biocontrol agents against the diamondback moth, Plutella xylostella(L.). |
| [114] |
Liu S, Wang X, Guo S, He J, Shi Z. 2000. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China. |
| [115] |
Jaworski CC, Thomine E, Rusch A, Lavoir AV, Wang S, et al. 2023. Crop diversification to promote arthropod pest management: a review. |
| [116] |
Perrot T, Rusch A, Gaba S, Bretagnolle V. 2023. Both long-term grasslands and crop diversity are needed to limit pest and weed infestations in agricultural landscapes. |
| [117] |
Sarkar SC, Wang E, Wu S, Lei Z. 2018. Application of trap cropping as companion plants for the management of agricultural pests: a review. |
| [118] |
Beaumelle L, Auriol A, Grasset M, Pavy A, Thiéry D, et al. 2021. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. |
| [119] |
Reddy GVP, Shrestha G, Sharma A. 2019. Special issue on the application of trap and cover crops in insect pest management. |
| [120] |
Liu Z, Wang F, Zhang Y, Temir E, Zhou X, et al. 2024. Combination of functional plants conserves predators, repels pests, and enhances biological control of Aphis spiraecola in apple orchards. |
| [121] |
Khan ZR, James DG, Midega CAO, Pickett JA. 2008. Chemical ecology and conservation biological control. |
| [122] |
Braman SK, Westerfield B. 2020. Influence of trap crops on tomato and squash insect pests. |
| [123] |
Cardim Ferreira Lima M, Damascena de Almeida Leandro ME, Valero C, Pereira Coronel LC, Gonçalves Bazzo CO. 2020. Automatic detection and monitoring of insect pests—a review. |
| [124] |
Yang S, Yang X, Mo J. 2018. The application of unmanned aircraft systems to plant protection in China. |
| [125] |
Chen CJ, Li YS, Tai CY, Chen YC, Huang YM. 2022. Pest incidence forecasting based on Internet of things and long short-term memory network. |
| [126] |
Zhou W, Arcot Y, Medina RF, Bernal J, Cisneros-Zevallos L, et al. 2024. Integrated pest management: an update on the sustainability approach to crop protection. |
| [127] |
Murtiningsih R, Kirana R, Hermanto C. 2021. Evaluation of chili accessions for resistance against Thrips sp. (Thysanoptera: Thripidae). |
| [128] |
Yu W, He J, Wu J, Xu Z, Lai F, et al. 2024. Resistance to planthoppers and southern rice black-streaked dwarf virus in rice germplasms. |
| [129] |
Li C, Wang J, Ling F, You A. 2023. Application and Development of Bt Insect Resistance Genes in Rice Breeding. |
| [130] |
Karlsson Green K, Stenberg JA, Lankinen Å. 2020. Making sense of Integrated Pest Management (IPM) in the light of evolution. |
| [131] |
Han P, Rodriguez-Saona C, Zalucki MP, Liu SS, Desneux N. 2024. A theoretical framework to improve the adoption of green Integrated Pest Management tactics. |
| [132] |
Ma CS, Wang BX, Wang XJ, Lin QC, Zhang W, et al. 2025. Crop pest responses to global changes in climate and land management. |
| [133] |
Francis JR. 2019. Biocontrol potential and genetic diversity of Metarhizium anisopliae lineage in agricultural habitats. |
| [134] |
Tchuenga Seutchueng TG, Tchindjang M, Carine Temegne N, Martial Kamtchoum S, Kenfack Fogang P. 2022. Efects of rainfall variability on the occurrence of crop pests at foumbot subdivision, west region of Cameroon. |