[1]

Gao RB, Lu RC, Qiu XY, Wang LK, Zhang K, et al. 2023. Detection of putative mutation I873S in the sodium channel of Megalurothrips usitatus (Bagnall) which may be associated with pyrethroid resistance. Insects 14(4):388

doi: 10.3390/insects14040388
[2]

Hou Q, Yuan L, Jin H, Yan H, Li F, et al. 2023. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Megalurothrips usitatus (thysanoptera: thripidae). Frontiers in Physiology 14:1161680

doi: 10.3389/fphys.2023.1161680
[3]

Wu J, Yuan L, Jin H, Zhang K, Li F, et al. 2023. Double sodium channel mutation, I265T/L1014F, is possibly related to pyrethroid-resistant in Thrips palmi. Archives of Insect Biochemistry and Physiology 113(4):e22021

doi: 10.1002/arch.22021
[4]

Gao R, Ma S, Geng J, Zhang K, Xian L, et al. 2024. Functional characterization of double mutations T929I/K1774N in the voltage-gated sodium channel of Megalurothrips usitatus (Bagnall) related to pyrethroid resistance. Journal of Agricultural and Food Chemistry 72:11958−67

doi: 10.1021/acs.jafc.4c00355
[5]

Li F, Gong X, Yuan L, Pan X, Jin H, et al. 2022. Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. Pesticide Biochemistry and Physiology 183:105054

doi: 10.1016/j.pestbp.2022.105054
[6]

Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, et al. 2020. Pest categorisation of Liriomyza bryoniae. EFSA Journal 18(3):e06038

doi: 10.2903/j.efsa.2020.6038
[7]

Singh Yadav SP, Pokhrel S, Poudel A, Devkota S, Katel S, et al. 2024. Evaluation of different insecticides against Liriomyza sativae (Diptera: Agromyzidae) on cucumber plants. Journal of Agriculture and Food Research 15:100987

doi: 10.1016/j.jafr.2024.100987
[8]

Wang YC, Chang YW, Gong WR, Hu J, Du YZ. 2024. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. Pest Management Science 80:2053−60

doi: 10.1002/ps.7944
[9]

Bass C, Denholm I, Williamson MS, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology 121:78−87

doi: 10.1016/j.pestbp.2015.04.004
[10]

Criniti A, Mazzoni E, Cassanelli S, Cravedi P, Tondelli A, et al. 2008. Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super-kdr based mechanisms in Italian strains of the peach potato aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology 90:168−74

doi: 10.1016/j.pestbp.2007.11.005
[11]

Meng J, Zhang C, Chen X, Cao Y, Shang S. 2014. Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Pesticide Biochemistry and Physiology 115:1−8

doi: 10.1016/j.pestbp.2014.09.002
[12]

Xu X, Ding Q, Wang X, Wang R, Ullah F, et al. 2022. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. Pest Management Science 78(4):1500−7

doi: 10.1002/ps.6768
[13]

Sain SK, Monga D, Hiremani NS, Nagrale DT, Kranthi S, et al. 2021. Evaluation of bioefficacy potential of entomopathogenic fungi against the whitefly (Bemisia tabaci Genn.) on cotton under polyhouse and field conditions. Journal of Invertebrate Pathology 183:107618

doi: 10.1016/J.JIP.2021.107618
[14]

Erdogan C, Velioglu AS, Gurkan MO, Denholm I, Moores GD. 2021. Detection of resistance to pyrethroid and neonicotinoid insecticides in the greenhouse whitefly, Trialeurodes vaporariorum (Westw.) (Hemiptera: Aleyrodidae). Crop Protection 146:105661

doi: 10.1016/j.cropro.2021.105661
[15]

Wang F, Liu J, Chen P, Li HY, Ma JJ, et al. 2020. Bemisia tabaci (Hemiptera: Aleyrodidae) Insecticide Resistance in Shandong Province, China. Journal of Economic Entomology 113:911−17

doi: 10.1093/jee/toz315
[16]

Xie W, Liu Y, Wang S, Wu Q, Pan H, et al. 2014. Sensitivity of Bemisia Tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage. Journal of Insect Science 14(1):261

doi: 10.1093/jisesa/ieu123
[17]

Morato RP, do Nascimento DV, Oliveira GM, Bermúdez NC, Lira R, et al. 2024. Indoxacarb, cyantraniliprole, and Euborellia annulipes as options for integrated control of diamondback moth. Journal of Applied Entomology 148:1300−10

doi: 10.1111/jen.13347
[18]

Calvin W, Palumbo JC, Anderson T. 2024. Chlorantraniliprole resistance associated with diamondback moth (Lepidoptera: Plutellidae) outbreaks in Arizona Brassica crops. Journal of Economic Entomology 117:2608−17

doi: 10.1093/jee/toae212
[19]

Wang D, Lv W, Yuan Y, Zhang T, Teng H, et al. 2022. Effects of insecticides on malacostraca when managing diamondback moth (Plutella xylostella) in combination planting-rearing fields. Ecotoxicology and Environmental Safety 229:113090

doi: 10.1016/j.ecoenv.2021.113090
[20]

Vincent C, Hallman G, Panneton B, Fleurat-Lessard F. 2003. Management of Agricultural Insects with Physical Control Methods. Annual review of entomology 48:261

doi: 10.1146/annurev.ento.48.091801.112639
[21]

Xian L, Jin H, Hou Q, Peng X, Ning H, et al. 2024. Cloning and expression analysis of visual genes of Megalurothrips usitatus. Journal of Tropical Biology 15(05):615−22

doi: 10.15886/j.cnki.rdswxb.20240029
[22]

Jin HF, Yuan LL, Wang LK, Li F, Wu SY. 2024. Ultraviolet-absorbing film both reduces major pest abundance (Thripidea & Diptera) and promotes crop yield for greenhouse cowpea Vigna unguiculata. Entomologia Generalis 44:153−61

doi: 10.1127/entomologia/2023/2025
[23]

Li F, Jin H, Yao Z, Xian L, Liu K, et al. 2024. A new optical practice as an effective alternative to insecticides for controlling highly resistant thrips. Tropical Plants 3:e021

doi: 10.48130/tp-0024-0014
[24]

Ali A, Rashid MA, Huang QY, Lei CL. 2016. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environmental Science and Pollution Research 23(17):17002−17007

doi: 10.1007/s11356-016-6865-0
[25]

Antignus Y, Mor N, Joseph BR, Lapidot M, Cohen S. 1996. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environmental Entomology 25(5):919−924

doi: 10.1093/ee/25.5.919
[26]

Wang L, Chen J, Zhao C, Jin H, Li F, et al. 2023. Production and quality of Hami melon (Cucumis melo var. reticulatus) and pest population of Thrips palmi in UV-blocking film greenhouses. Pest management science 79:4011−17

doi: 10.1002/ps.7597
[27]

Briscoe AD. 2008. Reconstructing the ancestral butterfly eye: focus on the opsins. Journal of Experimental Biology 211:1805−13

doi: 10.1242/jeb.013045
[28]

Shi L, Qiu L, Jiang Z, Xie Z, Dong M, et al. 2023. The influences of green light on locomotion, growth and reproduction in the brown planthopper Nilaparvata lugens. Pest management science 79(10):4100−12

doi: 10.1002/ps.7612
[29]

Jiang Y, Huang Q, Wei G, Gong Z, Li T, et al. 2023. Effects of yellow and green light stress on emergence, feeding and mating of Anomala corpulenta Motschulsky and Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). International Journal of Agricultural and Biological Engineering 16:81−87

doi: 10.25165/j.ijabe.20231601.7639
[30]

Wang Y, Chang Y, Zhang S, Jiang X, Yang B, et al. 2022. Comparison of phototactic behavior between two migratory pests, Helicoverpa armigera and Spodoptera frugiperda. Insects 13(10):917

doi: 10.3390/insects13100917
[31]

Li W, Quan L, Dong Y, Yao Q, Xu S, et al. 2021. Effects of white led light on reproduction of Conopomorpha sinensis (Lepidoptera: Gracillariidae) and its field application. Journal of Fruit Science 38(8):1349−58

doi: 10.13925/j.cnki.gsxb.20210182
[32]

Yun CN, Maeng IS, Yang SH, Hwang UJ, Kim KN, et al. 2023. Evaluating the phototactic behavior responses of the diamondback moth, Plutella xylostella, to some different wavelength LED lights in laboratory and field. Journal of Asia-Pacific Entomology 26(3):102080

doi: 10.1016/j.aspen.2023.102080
[33]

Weber DC, Morrison WR, Khrimian A, Rice KB, Leskey TC, et al. 2017. Chemical ecology of Halyomorpha halys: discoveries and applications. Journal of Pest Science 90:989−1008

doi: 10.1007/s10340-017-0876-6
[34]

You S, You M, Niu D. 2024. Identification of floral volatiles from Fagopyrum esculentum that attract Cotesia vestalis with potentially better biocontrol efficacy against Plutella xylostella. Pest management science 80:763−75

doi: 10.1002/ps.7808
[35]

Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM. 2011. The role of allelopathy in agricultural pest management. Pest Management Science 67(5):493−506

doi: 10.1002/ps.2091
[36]

Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. 2021. Latest developments in insect sex pheromone research and its application in agricultural pest management. Insects 12(6):484

doi: 10.3390/insects12060484
[37]

Liu P, Qin Z, Feng M, Zhang L, Huang X, et al. 2020. The male-produced aggregation pheromone of the bean flower thrips Megalurothrips usitatus in China: identification and attraction of conspecifics in the laboratory and field. Pest management science 76(9):2986−93

doi: 10.1002/ps.5844
[38]

Xiu C, Pan H, Zhang F, Luo Z, Bian L, et al. 2024. Identification of aggregation pheromones released by the stick tea thrips (Dendrothrips minowai) larvae and their application for controlling thrips in tea plantations. Pest management science 80(6):2528−38

[39]

Nakashima Y, Ida TY, Powell W, Pickett JA, Birkett MA, et al. 2016. Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. BioControl 61:485−496

doi: 10.1007/s10526-016-9734-3
[40]

Tembo Y, Mkindi AG, Mkenda PA, Mpumi N, Mwanauta R, et al. 2018. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Frontiers in Plant Science 9:1425

doi: 10.3389/fpls.2018.01425
[41]

Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR. 2021. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Frontiers in Plant Science 12:710268

doi: 10.3389/fpls.2021.710268
[42]

Balaško MK, Neral K, Nađ B, Bažok R, Drmić Z, et al. 2021. Azadirachtin efficacy in Colorado potato beetle and western flower thrips control. Romanian Agricultural Research 38:401−10

doi: 10.59665/rar3842
[43]

McGuire AV, Northfield TD. 2020. Tropical Occurrence and Agricultural Importance of Beauveria bassiana and Metarhizium anisopliae. Frontiers in Sustainable Food Systems 4:6

doi: 10.3389/fsufs.2020.00006
[44]

Uma Devi K, Padmavathi J, Uma Maheswara Rao C, Khan AAP, Mohan MC. 2008. A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Science and Technology 18:975−89

doi: 10.1080/09583150802450451
[45]

Sharma A, Sharma S, Yadav PK. 2023. Entomopathogenic fungi and their relevance in sustainable agriculture: a review. Cogent Food & Agriculture 9(1):2180857

doi: 10.1080/23311932.2023.2180857
[46]

Yang B, Du C, Ali S, Wu J. 2020. Molecular characterization and virulence of fungal isolates against the bean flower thrips, Megalurothrips usitatus Bagnall (Thysanoptera: Thripidae). Egyptian Journal of Biological Pest Control 30:1−8

doi: 10.1186/s41938-020-0205-x
[47]

Swathy K, Parmar MK, Vivekanandhan P. 2024. Biocontrol efficacy of entomopathogenic fungi Beauveria bassiana conidia against agricultural insect pests. Environmental Quality Management 34(1):e22174

doi: 10.1002/tqem.22174
[48]

Akutse KS, Khamis FM, Ambele FC, Kimemia JW, Ekesi S, et al. 2020. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology 177:107477

doi: 10.1016/j.jip.2020.107477
[49]

Shehzad M, Tariq M, Mukhtar T, Gulzar A. 2021. On the virulence of the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Egyptian Journal of Biological Pest Control 31(1):86

doi: 10.1186/s41938-020-00345-7
[50]

Sumalatha BV, Selvaraj K, Poornesha B, Ramanujam B. 2020. Pathogenicity of entomopathogenic fungus Isaria fumosorosea on rugose spiralling whitefly Aleurodicus rugioperculatus and its effect on parasitoid Encarsia guadeloupae. Biocontrol Science and Technology 30:1150−61

doi: 10.1080/09583157.2020.1797632
[51]

Chen X, Sun L, Zhang YX, Zhao LL, Lin JZ. 2020. Differing infection of Isaria fumosorosea (Wize) Brown & Smith in an aphid (Myzus persicae [Sulzer]) and predatory mite (Neoseiulus cucumeris [Oudemans]) under a scanning electron microscope. Systematic and Applied Acarology 25:2263−72

doi: 10.11158/saa.25.12.9
[52]

Liu Z, Liu FF, Li H, Zhang WT, Wang Q, et al. 2022. Virulence of the bio-control fungus Purpureocillium lilacinum against Myzus persicae (Hemiptera: Aphididae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology 115:462−73

doi: 10.1093/jee/toab270
[53]

Panyasiri C, Supothina S, Veeranondha S, Chanthaket R, Boonruangprapa T, et al. 2022. Control efficacy of entomopathogenic fungus Purpureocillium lilacinum against chili thrips (Scirtothrips dorsalis) on Chili Plant. Insects 13(8):684

doi: 10.3390/insects13080684
[54]

Poveda J. 2021. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control 159:104634

doi: 10.1016/j.biocontrol.2021.104634
[55]

Xia M, Munir S, Li Y, Ahmed A, He P, et al. 2024. Bacillus subtilis YZ-1 surfactins are involved in effective toxicity against agricultural pests. Pest management science 80(2):333−40

doi: 10.1002/ps.7759
[56]

Komagata Y, Sekine T, Oe T, Kakui S, Yamanaka S. 2024. Simultaneous use of Beauveria bassiana and Bacillus subtilis-based biopesticides contributed to dual control of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and tomato powdery mildew without antagonistic interactions. Egyptian Journal of Biological Pest Control 34(1):18

doi: 10.1186/s41938-024-00782-8
[57]

Gupta R, Keppanan R, Leibman-Markus M, Matveev S, Rav-David D, et al. 2024. Bacillus thuringiensis promotes systemic immunity in tomato, controlling pests and pathogens and promoting yield. Food Security 16:675−90

doi: 10.1007/s12571-024-01441-4
[58]

Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362−65

doi: 10.1038/nature11153
[59]

Amarathunga DC, Parry H, Grundy J, Dorin A. 2024. A predator–prey population dynamics simulation for biological control of Frankliniella occidentalis (Western Flower Thrips) by Orius laevigatus in strawberry plants. Biological Control 188:105409

doi: 10.1016/j.biocontrol.2023.105409
[60]

Mouratidis A, de Lima AP, Dicke M, Messelink GJ. 2022. Predator-prey interactions and life history of Orius laevigatus and O. majusculus feeding on flower and leaf-inhabiting thrips. Biological Control 172:104954

doi: 10.1016/j.biocontrol.2022.104954
[61]

Chi Y, Yu C, Feng M, Shu K, Zhu Y, et al. 2024. Effects of field releases of Neoseiulus barkeri on Megalurothrips usitatus abundance and arthropod diversity. Scientific Reports 14(1):14247

doi: 10.1038/s41598-024-64740-y
[62]

Summerfield A, Buitenhuis R, Jandricic S, Scott-Dupree CD. 2024. Laboratory investigations on the potential efficacy of biological control agents on two thrips species, onion thrips (Thrips tabaci Lindeman) and Western Flower Thrips (Frankliniella occidentalis (Pergande)). Insects 15(6):400

doi: 10.3390/insects15060400
[63]

Dalir S, Hajiqanbar H, Fathipour Y, Khanamani M. 2021. A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Pest management science 77(12):5418−29

doi: 10.1002/ps.6581
[64]

Mahendran P, Radhakrishnan B. 2019. Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), a potential predator of the tea thrips, Scirtothrips bispinosus Bagnall in south Indian tea plantations. Entomon 44:49−56

doi: 10.33307/entomon.v44i1.425
[65]

Kumar V, Kakkar G, McKenzie CL, Seal DR, Osborne LS. 2013. An overview of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) biology, distribution and management. In Weed and pest control-conventional and new challenges, eds. Soloneski S, Larramendy M. UK: IntechOpen. pp. 53−77 doi: 10.5772/55045

[66]

Stopar K, Trdan S, Bartol T. 2020. Thrips and natural enemies through text data mining and visualization. Plant Protection Science 57(1):47−58

doi: 10.17221/34/2020-PPS
[67]

Yang L , Shao Y , Li F , Chen DX , Li FY, et al. 2021. Advances on biological control of thrips pests. Chinese Journal of Biological Control 37(3):393−405

doi: 10.16409/j.cnki.2095-039x.2021.03.033
[68]

Nyasani JO, Meyhöfer R, Subramanian S, Poehling HM. 2013. Seasonal abundance of western flower thrips and its natural enemies in different French bean agroecosystems in Kenya. Journal of Pest Science 86:515−23

doi: 10.1007/s10340-013-0491-0
[69]

Loomans AJM. 2006. Exploration for hymenopterous parasitoids of thrips. Bulletin of Insectology 59:69−83

[70]

Cox PD, Matthews L, Jacobson RJ, Cannon R, MacLeod A, et al. 2006. Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. Biocontrol Science and Technology 16:871−91

doi: 10.1080/09583150600827728
[71]

Manandhar R, Wright MG. 2015. Enhancing biological control of corn earworm, Helicoverpa zea and thrips through habitat management and inundative release of Trichogramma pretiosum in corn cropping systems. Biological Control 89:84−90

doi: 10.1016/j.biocontrol.2015.05.020
[72]

Jyothi Sara J. 2014. Biotic agents for the management of American serpentine leaf miner, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). Thesis. Kerala Agricultural University (KAU), Vellanikkara, India. pp. 1−188

[73]

Weintraub PG, Scheffer SJ, Visser D, Valladares G, Soares Correa A, et al. 2017. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): understanding its pest status and management globally. Journal of Insect Science 17(1):28

doi: 10.1093/jisesa/iew121
[74]

Ridland PM, Umina PA, Pirtle EI, Hoffmann AA. 2020. Potential for biological control of the vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae), in Australia with parasitoid wasps. Austral Entomology 59:16−36

doi: 10.1111/aen.12444
[75]

Ho TTG, Ueno T. 2002. Biology of Hemiptarsenus varicornis (Hymenoptera: Eulophidae), a parasitoid wasp of the leafminer Liriomyza trifolii (Diptera: Agromyzidae). Journal of the Faculty of Agriculture, Kyushu University 47:45−54

doi: 10.5109/24458
[76]

Cheng XQ, Cao FQ, Zhang YB, Guo JY, Wan FH, et al. 2017. Life history and life table of the host-feeding parasitoid Hemiptarsenus varicornis (Hymenoptera: Eulophidae). Applied Entomology and Zoology 52:1−7

doi: 10.1007/s13355-017-0479-y
[77]

Xuan JL, Liu WX, Zhang YB, Cheng XQ, Guo JY, et al. 2018. Interactions between Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae), two parasitoids of agromyzid leafminers. Biological Control 126(0):45−52

doi: 10.1016/j.biocontrol.2018.07.005
[78]

Foba CN, Lagat ZO, Gitonga LM, Akutse KS, Fiaboe KKM. 2015. Interaction between Phaedrotoma scabriventris nixon and Opius dissitus muesebeck (Hymenoptera: Braconidae): endoparasitoids of liriomyza leafminer. African Entomology 23:120−31

doi: 10.4001/003.023.0110
[79]

Du SJ, Ye FY, Xu SY, Wan WJ, Guo J, et al. 2023. Thelytokous Diglyphus wani: a more promising biological control agent against agromyzid leafminers than its arrhenotokous counterpart. Journal of Integrative Agriculture, 22(12):3731−43

doi: 10.1016/j.jia.2023.06.002
[80]

Xing Z, Zhang L, Wu S, Yi H, Gao Y, et al. 2017. Niche comparison among two invasive leafminer species and their parasitoid Opius biroi: implications for competitive displacement. Scientific Reports 7:4246

doi: 10.1038/s41598-017-04562-3
[81]

Wang T, Zhang P, Ma C, Yasir Ali M, Gao G, et al. 2021. Is Orius sauteri poppius a promising biological control agent for walnut aphids? An assessment from the laboratory to field. Insects 12(1):25

doi: 10.3390/insects12010025
[82]

Lillo Is, Perez-Bañón C, Rojo S. 2021. Life cycle, population parameters, and predation rate of the hover fly Eupeodes corollae fed on the aphid Myzus persicae. Entomologia Experimentalis et Applicata 169:1027−38

doi: 10.1111/eea.13090
[83]

Pekas A, De Smedt L, Verachtert N, Boonen S. 2023. The brown lacewing Micromus angulatus: a new predator for the augmentative biological control of aphids. Biological Control 186:105342

doi: 10.1016/j.biocontrol.2023.105342
[84]

Delgado-Ramírez CS, Salas-Araiza MD, Martínez-Jaime OA, Guzmán-Mendoza R, Flores-Mejia S. 2019. Predation capability of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) feeding of Melanaphis sacchari (Hemiptera: Aphididae). Florida Entomologist 102(1):24−28

doi: 10.1653/024.102.0104
[85]

Mohammed AA. 2018. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. BioControl 63:277−87

doi: 10.1007/s10526-018-9868-6
[86]

Boulanger FX, Jandricic S, Bolckmans K, Wäckers FL, Pekas A. 2019. Optimizing aphid biocontrol with the predator Aphidoletes aphidimyza, based on biology and ecology. Pest management science 75:1479−93

doi: 10.1002/ps.5270
[87]

Fidelis EG, das Graças do Carmo D, Santos AA, de Sá Farias E, da Silva RS, et al. 2018. Coccinellidae, syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: A case study on cabbage crops. Crop Protection 112:288−94

doi: 10.1016/j.cropro.2018.06.015
[88]

Aparicio Y, Riudavets J, Gabarra R, Agustí N, Rodríguez-Gasol N, et al. 2021. Can Insectary plants enhance the presence of natural enemies of the green peach aphid (Hemiptera: Aphididae) in Mediterranean Peach Orchards? Journal of Economic Entomology 114(2):784−93

doi: 10.1093/jee/toaa298
[89]

Woolley VC, Tembo YLB, Ndakidemi B, Obanyi JN, Arnold SEJ, et al. 2021. The diversity of aphid parasitoids in East Africa and implications for biological control. Pest Management Science 78(3):1109−16

doi: 10.1002/ps.6723
[90]

Alvarez-Baca JK, Alfaro-Tapia A, Lavandero B, Le Lann C, Van Baaren J. 2020. Suitability and profitability of a cereal aphid for the Parasitoid Aphidius platensis in the context of conservation biological control of Myzus persicae in orchards. Insects 11(6):381

doi: 10.3390/insects11060381
[91]

Wang SY, Wang BL, Yan GL, Liu YH, Zhang DY, et al. 2020. Temperature-dependent demographic characteristics and control potential of Aphelinus asychis reared from Sitobion avenae as a biological control agent for Myzus persicae on chili peppers. Insects 11(8):475

doi: 10.3390/insects11080475
[92]

Lahiri S, Ni X, Buntin GD, Toews MD. 2020. Parasitism of Melanaphis sacchari (Hemiptera: Aphididae) by Lysiphlebus testaceipes (Hymenoptera: Braconidae) in the greenhouse and field. Journal of Entomological Science 55:14−24

doi: 10.18474/0749-8004-55.1.14
[93]

Di N, Zhu Z, Harwood JD, Xu Z, Wang S, et al. 2022. Fitness of Frankliniella occidentalis and Bemisia tabaci on three plant species pre-inoculated by Orius sauteri. Journal of Pest Science 95:1531−41

doi: 10.1007/s10340-022-01543-y
[94]

Cardoso AC, Marcossi Í, Fonseca MM, Kalile MO, Francesco LS, et al. 2025. A predatory mite as potential biological control agent of Bemisia tabaci on tomato plants. Journal of Pest Science 98:277−89

doi: 10.1007/s10340-024-01809-7
[95]

Han GD, Su J, Zhang K, Chen J, Zhang JP. 2020. The predatory mite Neoseiulus bicaudus (Mesostigmata: Phytoseiidae), a promising biocontrol agent of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Systematic and Applied Acarology 25:2273−85

doi: 10.11158/saa.25.12.10
[96]

Canassa VF, Marchi-Werle L, Schlick-Souza EC, Fernandes da Silva I, Lopes Baldin EL. 2024. Exploring the potential of Delphastus davidsoni (Coleoptera: Coccinellidae) in the biological control of Bemisia tabaci MEAM 1 (Hemiptera: Aleyrodidae). Florida Entomologist 107:20240040

doi: 10.1515/flaent-2024-0040
[97]

Rehman H. 2020. Use of Chrysoperla carnea larvae to control whitefly (Aleyrodidea: Hemiptera) on tomato plant in greenhouse. Pure and Applied Biology 9(4):2128−37

doi: 10.19045/bspab.2020.90227
[98]

Barbosa MFC, Poletti M, Poletti EC. 2019. Functional response of Amblyseius tamatavensis Blommers (Mesostigmata: Phytoseiidae) to eggs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on five host plants. Biological Control 138:104030

doi: 10.1016/j.biocontrol.2019.104030
[99]

Kumar V, Mehra L, McKenzie CL, Osborne LS. 2020. Functional response and prey stage preference of Delphastus catalinae and D. pallidus (Coleoptera: Coccinellidae) on Bemisia tabaci (Hemiptera: Aleyrodidae). Biocontrol Science and Technology 30:581−91

doi: 10.1080/09583157.2020.1749833
[100]

Vandervoet TF, Ellsworth PC, Carrière Y, Naranjo SE. 2018. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. Journal of Economic Entomology 111(3):1056−68

doi: 10.1093/jee/toy049
[101]

Moerkens R, Janssen D, Brenard N, Reybroeck E, del Mar Tellez M, et al. 2020. Simplified modelling enhances biocontrol decision making in tomato greenhouses for three important pest species. Journal of Pest Science 94(2):285−95

doi: 10.1007/s10340-020-01256-0
[102]

Yang S, Dou W, Li M, Wang Z, Chen G, et al. 2022. Flowering agricultural landscapes enhance parasitoid biological control to Bemisia tabaci on tomato in south China. PLOS ONE 1(8):e0272314

doi: 10.1371/journal.pone.0272314
[103]

Ou D, Ren LM, Liu Y, Ali S, Wang XM, et al. 2019. Compatibility and efficacy of the Parasitoid Eretmocerus hayati and the entomopathogenic fungus Cordyceps javanica for biological control of whitefly Bemisia tabaci. Insects 10(12):425

doi: 10.3390/insects10120425
[104]

Demers C, Dumont F, Jandricic S, McCreary C, Labbé RM. 2024. Bemisia tabaci (Gennadius), sweet potato whitefly / Aleurode du tabac and Trialeurodes vaporariorum (Westwood), greenhouse whitefly / Aleurode des serres (Hemiptera: Aleyrodidae). In Biological Control Programmes in Canada, 2013−2023, eds. Vankosky MA, Martel V. Canada: CAB International. pp.143−55 doi: 10.1079/9781800623279.0014

[105]

Tuan SJ, Yeh CC, Atlihan R, Chi H. 2016. Linking life table and predation Rate for biological control: a comparative study of Eocanthecona furcellata (Hemiptera: Pentatomidae) fed on Spodoptera litura (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology 109:13−24

doi: 10.1093/jee/tov265
[106]

Zhang P, Zhou Y, Qin D, Chen J, Zhang Z. 2022. Metabolic changes in larvae of predator Chrysopa sinica fed on azadirachtin-treated Plutella xylostella Larvae. Metabolites 12(2):158

doi: 10.3390/metabo12020158
[107]

Yuliadhi KA, Supartha IW, Wijaya IN, Pudjianto P, Nurmansyah A, et al. 2021. The preference and functional response of Sycanus aurantiacus (Hemiptera: Heteroptera: Reduviidae) on three prey types in laboratory conditions. Biodiversitas Journal of Biological Diversity 22(12):5562−67

doi: 10.13057/biodiv/d221252
[108]

Ur Rehman S, Jiang X, Saleem M, Zhou X, Chen B, et al. 2024. Demography and predatory potential of Orius strigicollis on eggs of Plutella xylostella at two temperatures. PeerJ 12:e18044

doi: 10.7717/peerj.18044
[109]

Silva-Torres CSA, Pontes IVAF, Torres JB, Barros R. 2010. New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotropical Entomology 39(5):835−38

doi: 10.1590/s1519-566x2010000500028
[110]

Nam H, Kwon M, Ramasamy S, Kim J. 2022. Identification of two diamondback moth parasitoids, Diadegma fenestrale and Diadegma semiclausum, using LAMP for application in biological control. Horticulturae 8(5):366

doi: 10.3390/horticulturae8050366
[111]

Munir S. 2019. Contributions to the biology of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Thesis. University of Alberta, US. pp. 1−185

[112]

Cock C, Mason PG, Haye T, Cappuccino N. 2021. Determining the host range of Diadromus collaris (Gravenhorst) (Hymenoptera: Ichneumonidae), a candidate biological control agent for diamondback moth Plutella xylostella linnaeus (Lepidoptera: Plutellidae) in Canada. Biological Control 161:104705

doi: 10.1016/j.biocontrol.2021.104705
[113]

Zolfagharian M, Saeedizadeh A, Abbasipour H. 2016. Efficacy of two entomopathogenic nematode species as potential biocontrol agents against the diamondback moth, Plutella xylostella(L.). Journal of Biological Control 30:78−83

doi: 10.18641/jbc/30/2/88697
[114]

Liu S, Wang X, Guo S, He J, Shi Z. 2000. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China. Bulletin of Entomological Research 90(3):221−31

doi: 10.1017/S0007485300000341
[115]

Jaworski CC, Thomine E, Rusch A, Lavoir AV, Wang S, et al. 2023. Crop diversification to promote arthropod pest management: a review. Agriculture Communications 1:100004

doi: 10.1016/j.agrcom.2023.100004
[116]

Perrot T, Rusch A, Gaba S, Bretagnolle V. 2023. Both long-term grasslands and crop diversity are needed to limit pest and weed infestations in agricultural landscapes. Proceedings of the National Academy of Sciences 120(49):e2300861120

doi: 10.1073/pnas.2300861120
[117]

Sarkar SC, Wang E, Wu S, Lei Z. 2018. Application of trap cropping as companion plants for the management of agricultural pests: a review. Insects 9(4):128

doi: 10.3390/insects9040128
[118]

Beaumelle L, Auriol A, Grasset M, Pavy A, Thiéry D, et al. 2021. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecological Solutions and Evidence 2(3):e12086

doi: 10.1002/2688-8319.12086
[119]

Reddy GVP, Shrestha G, Sharma A. 2019. Special issue on the application of trap and cover crops in insect pest management. Annals of the Entomological Society of America 112:293−94

doi: 10.1093/aesa/saz017
[120]

Liu Z, Wang F, Zhang Y, Temir E, Zhou X, et al. 2024. Combination of functional plants conserves predators, repels pests, and enhances biological control of Aphis spiraecola in apple orchards. Biological Control 192:105512

doi: 10.1016/j.biocontrol.2024.105512
[121]

Khan ZR, James DG, Midega CAO, Pickett JA. 2008. Chemical ecology and conservation biological control. Biological Control 45(2):210−24

doi: 10.1016/j.biocontrol.2007.11.009
[122]

Braman SK, Westerfield B. 2020. Influence of trap crops on tomato and squash insect pests. Journal of Entomological Science 55:578−83

doi: 10.18474/0749-8004-55.4.578
[123]

Cardim Ferreira Lima M, Damascena de Almeida Leandro ME, Valero C, Pereira Coronel LC, Gonçalves Bazzo CO. 2020. Automatic detection and monitoring of insect pests—a review. Agriculture 10(5):161

doi: 10.3390/agriculture10050161
[124]

Yang S, Yang X, Mo J. 2018. The application of unmanned aircraft systems to plant protection in China. Precision agriculture 19:278−92

doi: 10.1007/s11119-017-9516-7
[125]

Chen CJ, Li YS, Tai CY, Chen YC, Huang YM. 2022. Pest incidence forecasting based on Internet of things and long short-term memory network. Applied Soft Computing 124:108895

doi: 10.1016/j.asoc.2022.108895
[126]

Zhou W, Arcot Y, Medina RF, Bernal J, Cisneros-Zevallos L, et al. 2024. Integrated pest management: an update on the sustainability approach to crop protection. ACS Omega 9(40):41130−47

doi: 10.1021/acsomega.4c06628
[127]

Murtiningsih R, Kirana R, Hermanto C. 2021. Evaluation of chili accessions for resistance against Thrips sp. (Thysanoptera: Thripidae). IOP Conference Series: Earth and Environmental Science 653:012077

doi: 10.1088/1755-1315/653/1/012077
[128]

Yu W, He J, Wu J, Xu Z, Lai F, et al. 2024. Resistance to planthoppers and southern rice black-streaked dwarf virus in rice germplasms. Plant Disease 108:2321−029

doi: 10.1094/PDIS-10-23-2025-RE
[129]

Li C, Wang J, Ling F, You A. 2023. Application and Development of Bt Insect Resistance Genes in Rice Breeding. Sustainability 15(12):9779

doi: 10.3390/su15129779
[130]

Karlsson Green K, Stenberg JA, Lankinen Å. 2020. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evolutionary Applications 13:1791−805

doi: 10.1111/eva.13067
[131]

Han P, Rodriguez-Saona C, Zalucki MP, Liu SS, Desneux N. 2024. A theoretical framework to improve the adoption of green Integrated Pest Management tactics. Communications Biology 7(1):337

doi: 10.1038/s42003-024-06027-6
[132]

Ma CS, Wang BX, Wang XJ, Lin QC, Zhang W, et al. 2025. Crop pest responses to global changes in climate and land management. Nature Reviews Earth & Environment 6:264−83

doi: 10.1038/s43017-025-00652-3
[133]

Francis JR. 2019. Biocontrol potential and genetic diversity of Metarhizium anisopliae lineage in agricultural habitats. Journal of Applied Microbiology 127(2):556−64

doi: 10.1111/jam.14328
[134]

Tchuenga Seutchueng TG, Tchindjang M, Carine Temegne N, Martial Kamtchoum S, Kenfack Fogang P. 2022. Efects of rainfall variability on the occurrence of crop pests at foumbot subdivision, west region of Cameroon. International Journal of Plant and Soil Science 34:110−24

doi: 10.9734/ijpss/2022/v34i1030929