[1]

Chen K, Li W, Biney BW, Li Z, Shen J, et al. 2020. Evaluation of adsorptive desulfurization performance and economic applicability comparison of activated carbons prepared from various carbon sources. RSC advances 10:40329−40

doi: 10.1039/D0RA07862J
[2]

Abd Al-Khodor YA, Albayati TM. 2020. Adsorption desulfurization of actual heavy crude oil using activated carbon. Engineering and Technology Journal 38:1441−53

doi: 10.30684/etj.v38i10A.615
[3]

Li YX, Jiang WJ, Tan P, Liu XQ, Zhang DY, et al. 2015. What matters to the adsorptive desulfurization performance of metal-organic frameworks? The Journal of Physical Chemistry C 119:21969−77

[4]

Ahmed I, Jhung SH. 2016. Adsorptive desulfurization and denitrogenation using metal-organic frameworks. Journal of Hazardous Materials 301:259−76

doi: 10.1016/j.jhazmat.2015.08.045
[5]

Danmaliki GI, Saleh TA, Shamsuddeen AA. 2017. Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon. Chemical Engineering Journal 313:993−1003

doi: 10.1016/j.cej.2016.10.141
[6]

Abd Zaid SM, AbdulRazak AA, Abid MF. 2022. Desulfurization of a model liquid fuel by adsorption over zinc oxide/activated alumina assisted with ultrasonication. Egyptian Journal of Chemistry 65:807−25

doi: 10.21608/ejchem.2022.123060.5504
[7]

Mohammed MI, Abdul Razak AA, Shehab MA. 2017. Synthesis of nanocatalyst for hydrodesulfurization of gasoil using laboratory hydrothermal rig. Arabian Journal for Science and Engineering 42:1381−87

doi: 10.1007/s13369-016-2249-5
[8]

Shadmehri MA, Housaindokht MR, Nakhaei Pour A. 2023. Catalytic activity of metal oxides supported on graphene oxide in oxidative desulfurization and denitrogenation. Applied Organometallic Chemistry 37:e7272

doi: 10.1002/aoc.7272
[9]

Jha D, Haider MB, Kumar R, Balathanigaimani MS. 2020. Extractive desulfurization of fuels using diglycol based deep eutectic solvents. Journal of Environmental Chemical Engineering 8:104182

doi: 10.1016/j.jece.2020.104182
[10]

Yaseen M, Ullah S, Ahmad W, Subhan S, Subhan F. 2021. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils. Fuel 284:119102

doi: 10.1016/j.fuel.2020.119102
[11]

Chen H, Huang Z, You J, Xia Y, Ye J, et al. 2023. Dibenzothiophene removal from fuel oil by metal-organic frameworks: performance and kinetics. International Journal of Environmental Research and Public Health 20:1028

doi: 10.3390/ijerph20021028
[12]

Meshkat SS, Hosseini Dastgerdi Z, Abkhiz V, Hagh Shenas A. 2022. High content of sulfur in liquid stream removal via new carbonous nano adsorbent: equilibrium, kinetic study. Pollution 8:355−72

doi: 10.22059/poll.2021.321164.1049
[13]

Mohammadian M, Khosravi-Nikou MR, Shariati A, Aghajani M. 2018. Model fuel desulfurization and denitrogenation using copper and cerium modified mesoporous material (MSU-S) through adsorption process. Clean Technologies and Environmental Policy 20:95−112

doi: 10.1007/s10098-017-1460-8
[14]

Misra P, Badoga S, Chenna A, Dalai AK, Adjaye J. 2017. Denitrogenation and desulfurization of model diesel fuel using functionalized polymer: charge transfer complex formation and adsorption isotherm study. Chemical Engineering Journal 325:176−87

doi: 10.1016/j.cej.2017.05.033
[15]

Danmaliki GI, Saleh TA. 2017. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chemical Engineering Journal 307:914−27

doi: 10.1016/j.cej.2016.08.143
[16]

Danmaliki GI, Saleh TA. 2016. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels. Journal of Cleaner Production 117:50−55

doi: 10.1016/j.jclepro.2016.01.026
[17]

Kumar S, Srivastava VC, Badoni RP. 2011. Studies on adsorptive desulfurization by zirconia based adsorbents. Fuel 90:3209−16

doi: 10.1016/j.fuel.2011.06.029
[18]

Tian F, Shen Q, Fu Z, Wu Y, Jia C. 2014. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y. Fuel Processing Technology 128:176−82

doi: 10.1016/j.fuproc.2014.07.018
[19]

Palomino JM, Tran DT, Hauser JL, Dong H, Oliver SR. 2014. Mesoporous silica nanoparticles for high capacity adsorptive desulfurization. Journal of Materials Chemistry A 2:14890−95

doi: 10.1039/C4TA02570A
[20]

Jha D, Haider MB, Kumar R, Shim WG, Marriyappan Sivagnanam B. 2020. Batch and continuous adsorptive desulfurization of model diesel fuels using graphene nanoplatelets. Journal of Chemical & Engineering Data 65:2120−32

doi: 10.1021/acs.jced.9b01204
[21]

Khosravi-Nikou MR, Safari MH, Rad AA, Hassani P, Mohammadian M, et al. 2021. Desulfurization of liquid fuels using aluminum modified mesoporous adsorbent: towards experimental and kinetic investigations. Scientific Reports 11:8848

doi: 10.1038/s41598-021-88439-6
[22]

Lin L, Hou C, Zhang X, Wang Y, Chen Y, et al. 2018. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra (4-carboxyphenyl) porphyrin iron (III) chloride heterogeneous catalysts. Applied Catalysis B: Environmental 221:312−19

doi: 10.1016/j.apcatb.2017.09.033
[23]

Shadmehri MA, Housaindokht MR, Pour AN. 2021. Oxidative desulfurization of dibenzothiophene via layered graphitic carbon nitride-coordinated transition metal as a catalyst. New Journal of Chemistry 45:16773−83

doi: 10.1039/D1NJ01912K
[24]

Zhou X, Wang T, Zhang L, Che S, Liu H, et al. 2022. Highly efficient Ag2O/Na-g-C3N4 heterojunction for photocatalytic desulfurization of thiophene in fuel under ambient air conditions. Applied Catalysis B: Environmental 316:121614

doi: 10.1016/j.apcatb.2022.121614
[25]

Zhou N, Huang X, Zhang Y, He J, Zhang X. 2018. High performances of mesoporous g-C3N4 for adsorptive desulfurization in model gasoline (iso-octane) solutions. Applied Surface Science 448:636−41

doi: 10.1016/j.apsusc.2018.04.084
[26]

Wang A, Wang C, Fu L, Wong-Ng W, Lan Y. 2017. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Letters 9:1−21

doi: 10.1007/s40820-016-0103-7
[27]

Yuan X, Zhou C, Jin Y, Jing Q, Yang Y, et al. 2016. Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. Journal of Colloid and Interface Science 468:211−19

doi: 10.1016/j.jcis.2016.01.048
[28]

Zhu B, Xia P, Ho W, Yu J. 2015. Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science 344:188−95

doi: 10.1016/j.apsusc.2015.03.086
[29]

Chen WC, Yuan Y, Xiong Y, Rogach AL, Tong QX, et al. 2017. Aromatically C6-and C9-substituted phenanthro [9,10-d] imidazole blue fluorophores: structure–property relationship and electroluminescent application. ACS Applied Materials & Interfaces 9:26268−78

doi: 10.1021/acsami.7b06547
[30]

Park H, Kim KY, Youn DH, Choi YH, Kim WY, et al. 2017. Auto-reduction behavior of cobalt on graphitic carbon nitride coated alumina supports for fischer–tropsch synthesis. ChemCatChem 9:4098−104

doi: 10.1002/cctc.201700613
[31]

Wang X, Chen X, Thomas A, Fu X, Antonietti M. 2009. Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Advanced Materials 21:1609−12

doi: 10.1002/adma.200802627
[32]

Chen PW, Li K, Yu YX, Zhang WD. 2017. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Applied Surface Science 392:608−15

doi: 10.1016/j.apsusc.2016.09.086
[33]

Bartolini M, Molina J, Alvarez J, Goldwasser M, Pereira Almao P, et al. 2015. Effect of the porous structure of the support on hydrocarbon distribution in the Fischer–Tropsch reaction. Journal of Power Sources 285:1−11

doi: 10.1016/j.jpowsour.2015.03.081
[34]

Inagaki M, Tsumura T, Kinumoto T, Toyoda M. 2019. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 141:580−607

doi: 10.1016/j.carbon.2018.09.082
[35]

Chernyak SA, Stolbov DN, Ivanov AS, Klokov SV, Egorova TB, et al. 2020. Effect of type and localization of nitrogen in graphene nanoflake support on structure and catalytic performance of Co-based Fischer-Tropsch catalysts. Catalysis Today 357:193−202

doi: 10.1016/j.cattod.2019.02.044
[36]

Fu T, Liu R, Lv J, Li Z. 2014. Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer–Tropsch performance on cobalt catalyst. Fuel Processing Technology 122:49−57

doi: 10.1016/j.fuproc.2014.01.016
[37]

Ahmadi M, Mohammadian M, Khosravi-Nikou MR, Baghban A. 2019. Experimental, kinetic, and thermodynamic studies of adsorptive desulfurization and denitrogenation of model fuels using novel mesoporous materials. Journal of Hazardous Materials 374:129−39

doi: 10.1016/j.jhazmat.2019.04.029
[38]

Hernández-Maldonado AJ, Yang RT. 2004. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)−Y zeolites. Journal of the American Chemical Society 126:992−93

doi: 10.1021/ja039304m
[39]

Song H, Chang Y, Wan X, Dai M, Song H, Jin Z. 2014. Equilibrium, kinetic, and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite. Industrial & engineering chemistry research 53:5701−8

doi: 10.1021/ie403177t
[40]

Dhoble Y, Ahmed S. 2017. Equilibrium, kinetic and thermodynamic studies on the adsorption of thiocyanate by steel slag in an aqueous system. Advances in Environmental Technology 3:193−203

doi: 10.22104/aet.2018.2670.1133
[41]

Khan TA, Chaudhry SA, Ali I. 2015. Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution. Journal of Molecular Liquids 202:165−75

doi: 10.1016/j.molliq.2014.12.021
[42]

Mahajan T, Paikaray S, Mahajan P. 2023. Applicability of the equilibrium adsorption isotherms and the statistical tools on to them: a case study for the adsorption of fluoride onto Mg-Fe-CO3 LDH. Journal of Physics: Conference Series 2603:012056

doi: 10.1088/1742-6596/2603/1/012056
[43]

Deng C, Zhu M. 2020. New type nitrogen-doped carbon material applied to deep adsorption desulfurization. Energy & Fuels 34:9320−27

[44]

Xiong L, Chen FX, Yan XM, Mei P. 2012. The adsorption of dibenzothiophene using activated carbon loaded with cerium. Journal of Porous Materials 19:713−19

doi: 10.1007/s10934-011-9523-4
[45]

Song HS, Ko CH, Ahn W, Kim BJ, Croiset E, et al. 2012. Selective dibenzothiophene adsorption on graphene prepared using different methods. Industrial & Engineering Chemistry Research 51:10259−64

doi: 10.1021/ie301209c
[46]

Meshkat SS, Rashidi A, Dastgerdi ZH, Esrafili MD. 2019. Efficient DBT removal from diesel oil by CVD synthesized N-doped graphene as a nanoadsorbent: Equilibrium, kinetic and DFT study. Ecotoxicology and Environmental Safety 172:89−96

doi: 10.1016/j.ecoenv.2019.01.042
[47]

Hameed BH, Mahmoud DK, Ahmad AL. 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. Journal of hazardous materials 158:65−72

doi: 10.1016/j.jhazmat.2008.01.034
[48]

Xia Y, Yang T, Zhu N, Li D, Chen Z, et al. 2019. Enhanced adsorption of Pb (II) onto modified hydrochar: modeling and mechanism analysis. Bioresource Technology 288:121593

doi: 10.1016/j.biortech.2019.121593
[49]

Anastopoulos I, Kyzas GZ. 2016. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? Journal of Molecular Liquids 218:174−85

doi: 10.1016/j.molliq.2016.02.059
[50]

Babarinde A, Babalola JO, Adegoke J, Osundeko AO, Olasehinde S, et al. 2013. Biosorption of Ni(II), Cr(III), and Co(II) from solutions using Acalypha hispida leaf: kinetics, equilibrium, and thermodynamics. Journal of Chemistry 2013:460635

doi: 10.1155/2013/460635