| [1] |
Zhao T, Tang H, Xie L, Zheng Y, Ma Z, et al. 2019. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. |
| [2] |
Xiang L, Gao Y, Chen S, Sun J, Wu J, et al. 2022. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. |
| [3] |
Stompor M, Żarowska B. 2016. Antimicrobial activity of xanthohumol and its selected structural analogues. |
| [4] |
Tan YQ, Lin F, Ding YK, Dai S, Liang YX, et al. 2022. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. |
| [5] |
Yu P, Li J, Luo Y, Sun J, Hu Y, et al. 2023. Mechanistic role of Scutellaria baicalensis Georgi in breast cancer therapy. |
| [6] |
Wang Y, Liu Z, Liu G, Wang H. 2022. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. |
| [7] |
Song JW, Long JY, Xie L, Zhang LL, Xie QX, et al. 2020. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. |
| [8] |
Yuan Y, Wu C, Liu Y, Yang J, Huang L. 2013. The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. |
| [9] |
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. |
| [10] |
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, et al. 2022. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. |
| [11] |
Hakoshima T. 2018. Structural basis of the specific interactions of GRAS family proteins. |
| [12] |
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, et al. 2022. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. |
| [13] |
Bolle C, Koncz C, Chua NH. 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes & Development 14:1269−78 |
| [14] |
Greb T, Clarenz O, Schafer E, Muller D, Herrero R, et al. 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. |
| [15] |
Niu Y, Zhao T, Xu X, Li J. 2017. Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum). |
| [16] |
Li P, Zhang B, Su T, Li P, Xin X, et al. 2018. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis. |
| [17] |
Rui C, Peng F, Fan Y, Zhang Y, Zhang Z, et al. 2022. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton. |
| [18] |
Marshall SDG, Putterill JJ, Plummer KM, Newcomb RD. 2003. The carboxylesterase gene family from Arabidopsis thaliana. |
| [19] |
Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, et al. 2007. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. |
| [20] |
Tian C, Wan P, Sun S, Li J, Chen M. 2004. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. |
| [21] |
To VT, Shi Q, Zhang Y, Shi J, Shen C, et al. 2020. Genome-wide analysis of the GRAS gene family in barley (Hordeum vulgare L.). |
| [22] |
Huang W, Xian Z, Kang X, Tang N, Li Z. 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. |
| [23] |
Davière JM, Achard P. 2016. A pivotal role of DELLAs in regulating multiple hormone signals. |
| [24] |
Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, et al. 2010. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. |
| [25] |
Peng J, Carol P, Richards DE, King KE, Cowling RJ, et al. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. |
| [26] |
Sun TP, Gubler F. 2004. Molecular mechanism of gibberellin signaling in plants. |
| [27] |
Gomez MD, Cored I, Barro-Trastoy D, Sanchez-Matilla J, Tornero P, et al. 2023. DELLA proteins positively regulate seed size in Arabidopsis. |
| [28] |
Huang Y, Xiong H, Xie Y, Lyu S, Miao T, et al. 2022. BBX24 interacts with DELLA to regulate UV-B-induced photomorphogenesis in Arabidopsis thaliana. |
| [29] |
Xiong H, Lu D, Li Z, Wu J, Ning X, et al. 2023. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. |
| [30] |
Miao T, Li D, Huang Z, Huang Y, Li S, et al. 2021. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. |
| [31] |
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, et al. 2007. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. |
| [32] |
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, et al. 2003. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. |
| [33] |
Hu S, Wang D, Wang W, Zhang C, Li Y, et al. 2022. Whole genome and transcriptome reveal flavone accumulation in Scutellaria baicalensis roots. |
| [34] |
Pei T, Zhu S, Liao W, Fang Y, Liu J, et al. 2023. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. |
| [35] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. |
| [36] |
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. |
| [37] |
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. |
| [38] |
Cheng CS, Chen J, Tan HY, Wang N, Chen Z, et al. 2018. Scutellaria baicalensis and cancer treatment: recent progress and perspectives in biomedical and clinical studies. |
| [39] |
Fang DN, Zheng CW, Ma YL. 2023. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: a review. |
| [40] |
Guo Y, Wu H, Li X, Li Q, Zhao X, et al. 2017. Identification and expression of GRAS family genes in maize (Zea mays L. ). |
| [41] |
Zhao X, Liu DK, Wang QQ, Ke S, Li Y, et al. 2022. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. |
| [42] |
Wang N, Wang K, Li S, Jiang Y, Li L, et al. 2020. Transcriptome-wide identification, evolutionary analysis, and GA stress response of the GRAS gene family in Panax ginseng C. A. Meyer. |
| [43] |
Cao X, Duan W, Wei C, Chen K, Grierson D, et al. 2019. Genome-wide identification and functional analysis of carboxylesterase and methylesterase gene families in peach (Prunus persica L. batsch). |
| [44] |
Li Y, Pang Q, Li B, Fu Y, Guo M, et al. 2024. Characteristics of CXE family of Salvia miltiorrhiza and identification of interactions between SmGID1s and SmDELLAs. |
| [45] |
Liu X, Widmer A. 2014. Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice. |
| [46] |
Gao XH, Huang XZ, Xiao SL, Fu XD. 2008. Evolutionarily conserved DELLA-mediated gibberellin signaling in plants. |
| [47] |
Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, et al. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. |
| [48] |
Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, et al. 2010. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. |
| [49] |
Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, et al. 2007. The della Domain of ga insensitive Mediates the Interaction with the ga insensitive dwarf1a Gibberellin Receptor of Arabidopsis. |