[1]

Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64

doi: 10.1016/j.cell.2006.05.005
[2]

Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29

doi: 10.1242/dev.063511
[3]

Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology 22:621−29

doi: 10.1038/s41556-020-0515-y
[4]

Chałupka W, Cecich RA. 1997. Control of the first flowering in forest trees. Scandinavian Journal of Forest Research 12:102−11

doi: 10.1080/02827589709355390
[5]

Hyun Y, Richter R, Coupland G. 2017. Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiology 173:36−46

doi: 10.1104/pp.16.01523
[6]

Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, et al. 2014. Microrna156: a potential graft-transmissible microrna that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology 164:1011−27

doi: 10.1104/pp.113.230714
[7]

Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. MiRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012

doi: 10.1371/journal.pgen.1002012
[8]

Cheng YJ, Shang GD, Xu ZG, Yu S, Wu LY, et al. 2021. Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2115667118

doi: 10.1073/pnas.2115667118
[9]

Shen L, Zhang Y, Sawettalake N. 2022. A Molecular switch for FLOWERING LOCUS C activation determines flowering time in Arabidopsis. The Plant Cell 34:818−33

doi: 10.1093/plcell/koab286
[10]

Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL, et al. 2021. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes & Development 35:888−98

doi: 10.1101/gad.348362.121
[11]

Poethig RS. 2009. Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development 19:374−78

doi: 10.1016/j.gde.2009.06.001
[12]

Yu S, Lian H, Wang JW. 2015. Plant developmental transitions: the role of microRNAs and sugars. Current Opinion in Plant Biology 27:1−7

doi: 10.1016/j.pbi.2015.05.009
[13]

Jia XL, Chen YK, Xu XZ, Shen F, Zheng QB, et al. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports 7:14223

doi: 10.1038/s41598-017-14671-8
[14]

Cui L, Zheng F, Wang J, Zhang C, Xiao F, et al. 2020. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnology Journal 18:1670−82

doi: 10.1111/pbi.13331
[15]

Yamagishi M, Nomizu T, Nakatsuka T. 2024. Overexpression of lily microRNA156-resistant SPL13A stimulates stem elongation and flowering in Lilium formosanum under non-inductive (non-chilling) conditions. Frontiers in Plant Science 15:1456183

doi: 10.3389/fpls.2024.1456183
[16]

Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−52

doi: 10.1038/ng1841
[17]

Nielsen M, Menon G, Zhao Y, Mateo-Bonmati E, Wolff P, et al. 2024. COOLAIR and PRC2 function in parallel to silence flc during vernalization. Proceedings of the National Academy of Sciences of the United States of America 121:e1983493175

doi: 10.1073/pnas.2311474121
[18]

Franco-Echevarría E, Nielsen M, Schulten A, Cheema J, Morgan TE, et al. 2023. Distinct accessory roles of Arabidopsis VEL proteins in polycomb silencing. Genes & Development 37:801−17

doi: 10.1101/gad.350814.123
[19]

Heo JB, Sung S. 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76−79

doi: 10.1126/science.1197349
[20]

Gao J, Zhang K, Cheng YJ, Yu S, Shang GD, et al. 2022. A robust mechanism for resetting juvenility during each generation in Arabidopsis. Nature Plants 8:257−68

doi: 10.1038/s41477-022-01110-4
[21]

Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420

doi: 10.1146/annurev.arplant.043008.091939
[22]

Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. 2010. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genetics 6:e1001152

doi: 10.1371/journal.pgen.1001152
[23]

Crevillén P, Yang H, Cui X, Greeff C, Trick M, et al. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515:587−90

doi: 10.1038/nature13722
[24]

Tao Z, Hu H, Luo X, Jia B, Du J, et al. 2019. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nature Plants 5:424−35

doi: 10.1038/s41477-019-0402-3
[25]

Choi K, Kim J, Hwang HJ, Kim S, Park C, et al. 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell 23:289−303

doi: 10.1105/tpc.110.075911
[26]

Yuan W, Luo X, Li Z, Yang W, Wang Y, et al. 2017. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nature Genetics 48(12):1527−34

doi: 10.1038/ng.3712
[27]

Xu G, Tao Z, He Y. 2022. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. The Plant Cell 34:2205−21

doi: 10.1093/plcell/koac077
[28]

Li J, Han F, Yuan T, Li W, Li Y, et al. 2023. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nature Communications 14:1947

doi: 10.1038/s41467-023-37684-6
[29]

Song YT, Liu SW, Ma JJ, Chen X, Li FY, et al. 2025. The MADS-box transcription factor DAL1 links age to reproductive development through regulation of LEAFY homologs in conifer. Plant Physiology 198:kiaf139

doi: 10.1093/plphys/kiaf139
[30]

Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.e14

doi: 10.1016/j.cell.2021.12.006
[31]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[32]

Zhang Y, Wu Z, Feng M, Chen J, Qin M, et al. 2021. The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ros homeostasis at night. The Plant Cell 33:2716−35

doi: 10.1093/plcell/koab152
[33]

Wu L, Ma N, Jia Y, Zhang Y, Feng M, et al. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiology 173:853−62

doi: 10.1104/pp.16.01064
[34]

Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 4:17

doi: 10.2202/1544-6115.1128
[35]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[36]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583−89

doi: 10.1038/s41586-021-03819-2
[37]

Ma JJ, Chen X, Song YT, Zhang GF, Zhou XQ, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62

doi: 10.1093/plphys/kiab250
[38]

Ezcurra I, Wycliffe P, Nehlin L, Ellerström M, Rask L. 2000. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. The Plant Journal 24(1):57−66

doi: 10.1046/j.1365-313x.2000.00857.x
[39]

Marella HH, Quatrano RS. 2007. The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation. Planta 225:863−72

doi: 10.1007/s00425-006-0398-6
[40]

Suzuki M, Wang HHY, McCarty DR. 2007. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiology 143:902−11

doi: 10.1104/pp.106.092320
[41]

Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, et al. 2012. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Research 40(17):8240−54

doi: 10.1093/nar/gks594
[42]

Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, et al. 2000. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. The Plant Journal 21(5):401−8

doi: 10.1046/j.1365-313x.2000.00686.x
[43]

Duan S, Guan S, Fei R, Sun T, Kang X, et al. 2024. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora. Planta 259(6):133

doi: 10.1007/s00425-024-04411-4
[44]

Ghosh TK, Kaneko M, Akter K, Murai S, Komatsu K, et al. 2016. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements. Physiologia Plantarum 156(4):407−20

doi: 10.1111/ppl.12385
[45]

Song S, Wang G, Hu Y, Liu H, Bai X, et al. 2018. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. Journal of Experimental Botany 69(18):4283−93

doi: 10.1093/jxb/ery232
[46]

Hobo T, Asada M, Kowyama Y, Hattori T. 1999. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. The Plant Journal 19:679−89

doi: 10.1046/j.1365-313x.1999.00565.x
[47]

Tian R, Wang F, Zheng Q, Niza VMAG, Downie AB, Perry SE. 2020. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. The Plant Journal 103:1679−94

doi: 10.1111/tpj.14854
[48]

Hobo T, Kowyama Y, Hattori T. 1999. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proceedings of the National Academy of Sciences of the United States of America 96:15348−53

doi: 10.1073/pnas.96.26.15348
[49]

Zhang K, Zhao L, Yang X, Li M, Sun J, et al. 2019. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiologia Plantarum 165:814−29

doi: 10.1111/ppl.12788
[50]

Li G, Chandrasekharan MB, Wolffe AP, Hall TC. 2001. Chromatin structure and phaseolin gene regulation. Plant Molecular Biology 46:121−29

doi: 10.1023/A:1010693703421
[51]

Kroj T, Savino G, Valon C, Giraudat J, Parcy F. 2003. Regulation of storage protein gene expression in Arabidopsis. Development 130:6065−73

doi: 10.1242/dev.00814
[52]

Lazarova G, Zeng Y, Kermode AR. 2002. Cloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis). Journal of Experimental Botany 53:1219−21

doi: 10.1093/jexbot/53.371.1219