[1]

Pant D, Singh P. 2014. Pollution due to hazardous glass waste. Environmental Science and Pollution Research 21:2414−2436

doi: 10.1007/s11356-013-2337-y
[2]

Chapman N, Hooper A. 2012. The disposal of radioactive wastes underground. Proceedings of the Geologists' Association 123:46−63

doi: 10.1016/j.pgeola.2011.10.001
[3]

Fournier M, Gin S, Frugier P. 2014. Resumption of nuclear glass alteration: State of the art. Journal of Nuclear Materials 448:348−363

doi: 10.1016/j.jnucmat.2014.02.022
[4]

Gin S, Delaye JM, Angeli F, Schuller S. 2021. Aqueous alteration of silicate glass: state of knowledge and perspectives. npj Materials Degradation 5:42−62

doi: 10.1038/s41529-021-00190-5
[5]

Werme L, Björner IK, Bart G, Zwicky HU, Grambow B, et al. 1990. Chemical corrosion of highly radioactive borosilicate nuclear waste glass under simulated repository conditions. Journal of Materials Research 5:1130−1146

doi: 10.1557/JMR.1990.1130
[6]

Gin S, Abdelouas A, Criscenti LJ, Ebert WL, Ferrand K, et al. 2013. An international initiative on long-term behavior of high-level nuclear waste glass. Materials Today 16:243−248

doi: 10.1016/j.mattod.2013.06.008
[7]

Grambow B. 2006. Nuclear waste glasses - how durable? Elements 2:357−364

doi: 10.2113/gselements.2.6.357
[8]

Gin S, Jollivet P, Tribet M, Peuget S, Schuller S. 2017. Radionuclides containment in nuclear glasses: an overview. Radiochimica Acta 105:927−959

doi: 10.1515/ract-2016-2658
[9]

Ojovan MI, Lee WE. 2005. An introduction to nuclear waste immobilisation. Oxford: Elsevier. 315 pp. doi: 10.1016/B978-0-08-044462-8.X5000-5

[10]

Geisler T, Janssen A, Scheiter D, Stephan T, Berndt J, et al. 2010. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism. Journal of Non-Crystalline Solids 356:1458−1465

doi: 10.1016/j.jnoncrysol.2010.04.033
[11]

Geisler T, Nagel T, Kilburn MR, Janssen A, Icenhower JP, et al. 2015. The mechanism of borosilicate glass corrosion revisited. Geochimica et Cosmochimica Acta 158:112−129

doi: 10.1016/j.gca.2015.02.039
[12]

Hellmann R, Wirth R, Daval D, Barnes JP, Penisson JM, et al. 2012. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: A study based on the nanometer-scale chemistry of fluid-silicate interfaces. Chemical Geology 294–295:203−216

doi: 10.1016/j.chemgeo.2011.12.002
[13]

Hellmann R, Cotte S, Cadel E, Malladi S, Karlsson LS, et al. 2015. Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nature Materials 14:307−311

doi: 10.1038/nmat4172
[14]

Gong Y, Xu J, Buchanan RC. 2018. The aqueous corrosion of nuclear waste glasses revisited: Probing the surface and interfacial phenomena. Corrosion Science 143:65−75

doi: 10.1016/j.corsci.2018.08.028
[15]

Lenting C, Plümper O, Kilburn M, Guagliardo P, Klinkenberg M, et al. 2018. Towards a unifying mechanistic model for silicate glass corrosion. NPJ Materials Degradation 2:28−38

doi: 10.1038/s41529-018-0048-z
[16]

Gin S, Ryan JV, Schreiber DK, Neeway J, Cabié M. 2013. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment. Chemical Geology 349–350:99−109

doi: 10.1016/j.chemgeo.2013.04.001
[17]

Gin S, Jollivet P, Fournier M, Angeli F, Frugier P, et al. 2015. Origin and consequences of silicate glass passivation by surface layers. Nature Communications 6:6360−6366

doi: 10.1038/ncomms7360
[18]

Ferrand K, Abdelouas A, Grambow B. 2006. Water diffusion in the simulated French nuclear waste glass SON 68 contacting silica rich solutions: experimental and modeling. Journal of Nuclear Materials 355:54−67

doi: 10.1016/j.jnucmat.2006.04.005
[19]

Van Iseghem P, Aertsens M, Gin S, Deneele D, Grambow B, et al. 2009. GLAMOR - or how we achieved a common understanding on the decrease of glass dissolution kinetics. In Environmental Issues and Waste Management Technologies in the Materials and Nuclear Industries XII, eds Cozzi A, Ohji T. Pittsburgh: American Ceramic Society. pp 115–126 doi: 10.1002/9780470538371.ch12

[20]

Gin S, Jollivet P, Fournier M, Berthon C, Wang Z, et al. 2015. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass. Geochimica et Cosmochimica Acta 151:68−85

doi: 10.1016/j.gca.2014.12.009
[21]

Vienna JD, Ryan JV, Gin S, Inagaki Y. 2013. Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glasses. International Journal of Applied Glass Science 4:283−294

doi: 10.1111/ijag.12050
[22]

Doremus RH. 1975. Interdiffusion of hydrogen and alkali ions in a glass surface. Journal of Non-Crystalline Solids 19:137−144

doi: 10.1016/0022-3093(75)90079-4
[23]

Doremus RH. 1982. Interdiffusion of alkali and hydronium ions in glass: partial ionization. Journal of Non-Crystalline Solids 48:431−436

doi: 10.1016/0022-3093(82)90178-8
[24]

McGrail BP, Icenhower JP, Shuh DK, Liu P, Darab JG, et al. 2001. The structure of Na2O-Al2O3-SiO2 glass: Impact on sodium ion exchange in H2O and D2O. Journal of Non-Crystalline Solids 296:10−26

doi: 10.1016/S0022-3093(01)00890-0
[25]

Geneste G, Bouyer F, Gin S. 2006. Hydrogen-sodium interdiffusion in borosilicate glasses investigated from first principles. Journal of Non-Crystalline Solids 352:3147−3152

doi: 10.1016/j.jnoncrysol.2006.04.023
[26]

Zapol P, He H, Kwon KD, Criscenti LJ. 2013. First-principles study of hydrolysis reaction barriers in a sodium borosilicate glass. International Journal of Applied Glass Science 4:395−407

doi: 10.1111/ijag.12052
[27]

Frugier P, Gin S, Minet Y, Chave T, Bonin B, et al. 2008. SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model. Journal of Nuclear Materials 380:8−21

doi: 10.1016/j.jnucmat.2008.06.044
[28]

Bunker BC. 1994. Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids 179:300−308

doi: 10.1016/0022-3093(94)90708-0
[29]

Ojovan MI, Lee WE, Hand RJ. 2006. Role of ion exchange in the corrosion of nuclear waste glasses. MRS Online Proceedings Library 932:1281

doi: 10.1557/PROC-932-128.1
[30]

Collin M, Fournier M, Frugier P, Charpentier T, Moskura M, et al. 2018. Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions. NPJ Materials Degradation 2:4

doi: 10.1038/s41529-017-0025-y
[31]

Gin S, Guittonneau C, Godon N, Neff D, Rébiscoul D, et al. 2011. Nuclear glass durability: New insight into alteration layer properties. Journal of Physical Chemistry C 115:18696−18706

doi: 10.1021/jp205477q
[32]

Cailleteau C, Devreux F, Spalla O, Angeli F, Gin S. 2011. Why do certain glasses with a high dissolution rate undergo a low degree of corrosion? Journal of Physical Chemistry C 115:5846−585

doi: 10.1021/jp111458f
[33]

Gin S, Neill L, Fournier M, Frugier P, Ducasse T, et al. 2016. The controversial role of inter-diffusion in glass alteration. Chemical Geology 440:115−123

doi: 10.1016/j.chemgeo.2016.07.014
[34]

Taron M, Gin S, Kaya H, Delaye JM, Kim SH. 2025. Impact of B and Al on the initial and residual dissolution rate of alumino-borosilicate glasses. Part II: gel properties. NPJ Materials Degradation 9:59

doi: 10.1038/s41529-025-00576-9
[35]

Grambow B, Müller R. 2001. First-order dissolution rate law and the role of surface layers in glass performance assessment. Journal of Nuclear Materials 298:112−124

doi: 10.1016/S0022-3115(01)00619-5
[36]

Vernaz E, Gin S, Jégou C, Ribet I. 2001. Present understanding of R7T7 glass alteration kinetics and their impact on long-term behavior modeling. Journal of Nuclear Materials 298:27−36

doi: 10.1016/S0022-3115(01)00643-2
[37]

Gin S, Collin M, Jollivet P, Fournier M, Minet Y, et al. 2018. Dynamics of self-reorganization explains passivation of silicate glasses. Nature Communications 9:2169−2177

doi: 10.1038/s41467-018-04511-2
[38]

Advocat T, Jollivet P, Crovisier JL, Del Nero M. 2001. Long-term alteration mechanisms in water for SON68 radioactive borosilicate glass. Journal of Nuclear Materials 298:55−62

doi: 10.1016/S0022-3115(01)00621-3
[39]

Gin S, Guo X, Delaye JM, Angeli F, Damodaran K, et al. 2020. Insights into the mechanisms controlling the residual corrosion rate of borosilicate glasses. NPJ Materials Degradation 4:41−49

doi: 10.1038/s41529-020-00145-2
[40]

Rimsza JM, Du J. 2018. Nanoporous silica gel structures and evolution from reactive force field-based molecular dynamics simulations. NPJ Materials Degradation 2:18−27

doi: 10.1038/s41529-018-0039-0
[41]

Gin S, Jollivet P, Barba Rossa G, Tribet M, Mougnaud S, et al. 2017. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: a multiscale approach to investigating rate-limiting mechanisms. Geochimica et Cosmochimica Acta 202:57−76

doi: 10.1016/j.gca.2016.12.029
[42]

Hopf J, Eskelsen JR, Chiu M, Ievlev AV, Ovchinnikova OS, et al. 2018. Toward an understanding of surface layer formation, growth, and transformation at the glass–fluid interface. Geochimica et Cosmochimica Acta 229:65−84

doi: 10.1016/j.gca.2018.01.035
[43]

Mir AH, Jan A, Delaye JM, Donnelly S, Hinks J et al. 2020. Effect of decades of corrosion on the microstructure of altered glasses and their radiation stability. NPJ Materials Degradation 4:11−19

doi: 10.1038/s41529-020-0115-0
[44]

Gin S, Mir AH, Jan A, Delaye JM, Chauvet E, et al. 2020. A General Mechanism for Gel Layer Formation on Borosilicate Glass under Aqueous Corrosion. Journal of Physical Chemistry C 124:5132−5144

doi: 10.1021/acs.jpcc.9b10491
[45]

Verney-Carron A, Vigier N, Millot R. 2011. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochimica et Cosmochimica Acta 75:3452−3468

doi: 10.1016/j.gca.2011.03.019
[46]

Goût TL, Bohlin MS, Tipper ET, Lampronti GI, Farnan I. 2021. Temperature dependent lithium isotope fractionation during glass dissolution. Geochimica et Cosmochimica Acta 313:133−154

doi: 10.1016/j.gca.2021.09.005
[47]

Goût TL, Misra S, Tipper ET, Bohlin MS, Guo R, et al. 2019. Diffusive processes in aqueous glass dissolution. NPJ Materials Degradation 3:39−47

doi: 10.1038/s41529-019-0102-5
[48]

Gaillardet J, Lemarchand D. 2018. Boron in the Weathering Environment. In Boron Isotopes. Advances in Isotope Geochemistry, eds. Marschall H, Foster G. Cham: Springer International Publishing. pp. 163–188 doi: http://doi.org/10.1007/978-3-319-64666-4_7

[49]

Lemarchand E, Schott J, Gaillardet J. 2007. How surface complexes impact boron isotope fractionation: Evidence from Fe and Mn oxides sorption experiments. Earth and Planetary Science Letters 260:277−296

doi: 10.1016/j.jpgl.2007.05.039
[50]

Lopalco A, Lopedota AA, Laquintana V, Denora N, Stella VJ. 2020. Boric acid, a lewis acid with unique and unusual properties: formulation implications. Journal of Pharmaceutical Sciences 109:2375−2386

doi: 10.1016/j.xphs.2020.04.015
[51]

Smith HD, Wiersema RJ. 1972. Boron-11 Nuclear Magnetic Resonance Study of Polyborate Ions in Solution. Inorganic Chemistry 11:1152−1154

doi: 10.1021/ic50111a056
[52]

Balz R, Brändle U, Kämmerer E, Köhnlein D, Lutz O, et al. 1986. 11B and 10B NMR investigations in aqueous solutions. Zeitschrift fur Naturforschung - Section A [Journal of Physical Sciences] 41:737−742

doi: 10.1515/zna-1986-0508
[53]

Ishihara K, Nagasawa A, Umemoto K, Ito H, Saito K. 1994. Kinetic Study of Boric Acid-Borate Interchange in Aqueous Solution by 11B NMR Spectroscopy. Inorganic Chemistry 33:3811−3816

doi: 10.1021/ic00095a026
[54]

Foster GL, Lécuyer C, Marschall HR. 2016. Boron stable isotopes. In Encyclopedia of Geochemistry, ed. White WM. Cham: Springer International Publishing. pp. 1–6 doi: http://doi.org/10.1007/978-3-319-39193-9_238-1

[55]

Marschall HR, Foster GL. 2018. Boron isotopes in the earth and planetary sciences – a short history and introduction. In Boron Isotopes. Advances in Isotope Geochemistry, eds. Marschall H, Foster G. Cham: Springer International Publishing. pp. 1–11 doi: 10.1007/978-3-319-64666-4_1

[56]

Chetelat B, Gaillardet J, Freydier R, Négrel P. 2005. Boron isotopes in precipitation: Experimental constraints and field evidence from French Guiana. Earth and Planetary Science Letters 235:16−30

doi: 10.1016/j.jpgl.2005.02.014
[57]

Lemarchand D, Gaillardet J, Lewin É, Allègre CJ. 2002. Boron isotope systematics in large rivers: Implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chemical Geology 190:123−140

doi: 10.1016/S0009-2541(02)00114-6
[58]

Williams LB, Wieser ME, Fennell J, Hutcheon I, Hervig RL. 2001. Application of boron isotopes to the understanding of fluid-rock interactions in a hydrothermally stimulated oil reservoir in the Alberta Basin, Canada. Geofluids 1:229−240

doi: 10.1046/j.1468-8123.2001.00016.x
[59]

Schmitt AD, Vigier N, Lemarchand D, Millot R, Stille P, et al. 2012. Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. Comptes Rendus – Géoscience 344:704−722

doi: 10.1016/j.crte.2012.10.002
[60]

Lemarchand E, Schott J, Gaillardet J. 2005. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochimica et Cosmochimica Acta 69:3519−3533

doi: 10.1016/j.gca.2005.02.024
[61]

Klochko K, Kaufman AJ, Yao W, Byrne RH, Tossell JA. 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters 248:276−285

doi: 10.1016/j.jpgl.2006.05.034
[62]

Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M. 1977. Fundamental studies on the ion exchange separation of boron isotopes. Bulletin of the Chemical Society of Japan 50:158−163

doi: 10.3327/jaesj.9.376
[63]

Negrel P, Petelet-Giraud E, Kloppmann W, Casanova J. 2002. Boron isotope signatures in the coastal groundwaters of French Guiana. Water Resources Research 38:44-1−44-5

doi: 10.1029/2002wr001299
[64]

Williams LB, Hervig RL, Holloway JR, Hutcheon I. 2001. Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illitization of smectite. Geochimica et Cosmochimica Acta 65:1769−1782

doi: 10.1016/S0016-7037(01)00557-9
[65]

Mavromatis V, Montouillout V, Noireaux J, Gaillardet J, Schott J. 2015. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochimica et Cosmochimica Acta 150:299−313

doi: 10.1016/j.gca.2014.10.024
[66]

Kowalski PM, Wunder B. 2018. Boron isotope fractionation among vapor--liquids--solids--melts: experiments and atomistic modeling. In Boron Isotopes. Advances in Isotope Geochemistry, eds. Marschall H, Foster G. Cham: Springer International Publishing. pp. 33–69 doi: 10.1007/978-3-319-64666-4_3

[67]

Lemarchand D, Cividini D, Turpault MP, Chabaux F. 2012. Boron isotopes in different grain size fractions: Exploring past and present water-rock interactions from two soil profiles (Strengbach, Vosges Mountains). Geochimica et Cosmochimica Acta 98:78−93

doi: 10.1016/j.gca.2012.09.009
[68]

Chetelat B., Liu CQ, Gaillardet J, Wang QL, Zhao ZQ, et al. 2009. Boron isotopes geochemistry of the Changjiang basin rivers. Geochimica et Cosmochimica Acta 73:6084−6097

doi: 10.1016/j.gca.2009.07.026
[69]

Kim Y, Kirkpatrick RJ. 2006. 11B NMR investigation of boron interaction with mineral surfaces: Results for boehmite, silica gel and illite. Geochimica et Cosmochimica Acta 70:3231−3238

doi: 10.1016/j.gca.2006.04.026
[70]

Lemarchand D, Gaillardet J. 2006. Transient features of the erosion of shales in the Mackenzie basin (Canada), evidences from boron isotopes. Earth and Planetary Science Letters 245:174−189

doi: 10.1016/j.jpgl.2006.01.056
[71]

Palmer MR, Spivack AJ, Edmond JM. 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochimica et Cosmochimica Acta 51:2319−2323

doi: 10.1016/0016-7037(87)90285-7
[72]

Li YC, Zhou YR, Wei HZ, Palmer MR, Guo FY, et al. 2025. Equilibrium boron isotope fractionation during kaolinite adsorption and applications to chemical weathering processes. Geochimica et Cosmochimica Acta 391:80−95

doi: 10.1016/j.gca.2024.12.014
[73]

Noireaux J, Sullivan PL, Gaillardet J, Louvat P, Steinhoefel G, et al. 2021. Developing boron isotopes to elucidate shale weathering in the critical zone. Chemical Geology 559:119900

doi: 10.1016/j.chemgeo.2020.119900
[74]

Seyfried WE, Chen X, Chan LH. 1998. Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350 °C, 500 bars. Geochimica et Cosmochimica Acta 62:949−960

doi: 10.1016/S0016-7037(98)00045-3
[75]

Saldi GD, Louvat P, Schott J, Gaillardet J. 2021. The pH dependence of the isotopic composition of boron adsorbed on amorphous silica. Geochimica et Cosmochimica Acta 308:1−20

doi: 10.1016/j.gca.2021.05.052
[76]

Singer CR, Behrens H, Horn I, Fechtelkord M, Weyer S. 2025. Boron diffusion, related isotope fractionation and the structural role of B in pegmatite forming melts. Geochimica et Cosmochimica Acta 392:70−87

doi: 10.1016/j.gca.2024.11.023
[77]

Voinot A, Lemarchand D, Collignon C, Granet M, Chabaux F, et al. 2013. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes. Geochimica et Cosmochimica Acta 117:144−160

doi: 10.1016/j.gca.2013.04.012
[78]

Fleury B, Godon N, Ayral A, Gin S. 2013. SON68 glass dissolution driven by magnesium silicate precipitation. Journal of Nuclear Materials 442:17−28

doi: 10.1016/j.jnucmat.2013.08.029
[79]

Gin S, Beaudoux X, Angéli F, Jégou C, Godon N. 2012. Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides. Journal of Non-Crystalline Solids 358:2559−2570

doi: 10.1016/j.jnoncrysol.2012.05.024
[80]

Goût TL, Harrison MT, Farnan I. 2019. Impacts of lithium on Magnox waste glass dissolution. Journal of Non-Crystalline Solids 517:96−105

doi: 10.1016/j.jnoncrysol.2019.04.040
[81]

ASTM. 2014. Standard Test methods for determining chemical durability of nuclear , hazardous , and mixed waste glasses and multiphase glass ceramics: the Product Consistency Test (PCT) Designation: C1285-14. ASTM, Conshohocken, USA, 2002 doi: 10.1520/C1285-14

[82]

Parkhurst DL, Appelo CAJ. 2013. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U. S. Geological Survey Techniques and Methods 6. A43. US Geological Survey. 497 pp. doi: 10.3133/tm6A43

[83]

Haynes WM. 2015. Geophysics, astronomy, and acoustics. In CRC handbook of chemistry and physics, ed. Haynes WM. 95th Edition. Cleveland, Ohio: CRC Press. pp. 14-2 − 14-3 doi: 10.1201/b17118

[84]

Jégou C, Gin S, Larché F. 2000. Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate. Journal of Nuclear Materials 280:216−229

doi: 10.1016/S0022-3115(00)00039-8
[85]

Misra S, Owen R, Kerr J, Greaves M, Elderfield H. 2014. Determination of δ11B by HR-ICP-MS from mass limited samples: application to natural carbonates and water samples. Geochimica et Cosmochimica Acta 140:531−552

doi: 10.1016/j.gca.2014.05.047
[86]

Guillermic M, Misra S, Eagle R, Villa A, Chang F, et al. 2020. Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients. Biogeosciences 17:3487−3510

doi: 10.5194/bg-17-3487-2020
[87]

Lloyd NS, Sadekov AY, Misra S. 2018. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation MC-ICP-MS. Rapid Communications in Mass Spectrometry 32:9−18

doi: 10.1002/rcm.8009
[88]

Vogl J, Rosner M. 2012. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial materials. Geostandards and Geoanalytical Research 36:161−175

doi: 10.1111/j.1751-908X.2011.00136.x
[89]

Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, et al. 2005. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research 29:333−338

doi: 10.1111/j.1751-908x.2005.tb00904.x
[90]

Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, et al. 2010. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21:115−144

doi: 10.1111/j.1751-908X.1997.tb00538.x
[91]

Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, et al. 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35:397−429

doi: 10.1111/j.1751-908X.2011.00120.x
[92]

Tiepolo M, Bouman C, Vannucci R, Schwieters J. 2006. Laser ablation multicollector ICPMS determination of δ11B in geological samples. Applied Geochemistry 21:788−801

doi: 10.1016/j.apgeochem.2006.02.014
[93]

Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G, et al. 2003. Intercomparison of boron isotope and concentration measurements. Part I: Selection, preparation and homogeneity tests of the intercomparison materials. Geostandards Newsletter 27:21−39

doi: 10.1111/j.1751-908X.2003.tb00710.x
[94]

Guo R, Brigden CT, Gin S, Swanton SW, Farnan I. 2018. The effect of magnesium on the local structure and initial dissolution rate of simplified UK Magnox waste glasses. Journal of Non-Crystalline Solids 497:82−92

doi: 10.1016/j.jnoncrysol.2018.03.002
[95]

Ryan JV, Smith NJ, Neeway JJ, Reiser JT, Parruzot B, et al. 2023. ISG-2: properties of the second International Simple Glass. NPJ Materials Degradation 7:47−55

doi: 10.1038/s41529-023-00352-7
[96]

Curti E, Crovisier JL, Morvan G, Karpoff AM. 2006. Long-term corrosion of two nuclear waste reference glasses (MW and SON68): a kinetic and mineral alteration study. Applied Geochemistry 21:1152−1168

doi: 10.1016/j.apgeochem.2006.03.010
[97]

Frugier P, Martin C, Ribet I, Advocat T, Gin S. 2005. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ. Journal of Nuclear Materials 346:194−207

doi: 10.1016/j.jnucmat.2005.06.023
[98]

Thien BMJ, Godon N, Ballestero A, Gin S, Ayral A. 2012. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses. Journal of Nuclear Materials 427:297−310

doi: 10.1016/j.jnucmat.2012.05.025
[99]

Debure M, De Windt L, Frugier P, Gin S. 2013. HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions. Journal of Nuclear Materials 443:507−521

doi: 10.1016/j.jnucmat.2013.07.068
[100]

Aréna H, Godon N, Rébiscoul D, Podor R, Garcès E, et al. 2016. Impact of Zn, Mg, Ni and Co elements on glass alteration: Additive effects. Journal of Nuclear Materials 470:55−67

doi: 10.1016/j.jnucmat.2015.11.050
[101]

Aréna H, Godon N, Rébiscoul D, Frugier P, Podor R, et al. 2017. Impact of iron and magnesium on glass alteration: Characterization of the secondary phases and determination of their solubility constants. Applied Geochemistry 82:119−133

doi: 10.1016/j.apgeochem.2017.04.010
[102]

Goût TL, Harrison MT, Farnan I. 2019. Relating Magnox and international waste glasses. Journal of Non-Crystalline Solids 524:119647

doi: 10.1016/j.jnoncrysol.2019.119647
[103]

Aréna H, Podor R, Brau HP, Nelayah J, Godon N, et al. 2021. Characterization of the boron profile and coordination in altered glass layers by EEL spectroscopy. Micron 141:102983

doi: 10.1016/j.micron.2020.102983
[104]

Angeli F, Charpentier T, Jollivet P, de Ligny D, Bergler M, et al. 2018. Effect of thermally induced structural disorder on the chemical durability of International Simple Glass. NPJ Materials Degradation 2:31−41

doi: 10.1038/s41529-018-0052-3
[105]

Li YC, Wei HZ, Palmer MR, Jiang SY, Liu X, et al. 2021. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids. Chemical Geology 561:120030

doi: 10.1016/j.chemgeo.2020.120030
[106]

Karahan S, Yurdakoç M, Seki Y, Yurdakoç K. 2006. Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interface Science 293:36−42

doi: 10.1016/j.jcis.2005.06.048
[107]

Hemming NG, Reeder RJ, Hart SR. 1998. Growth-step-selective incorporation of boron on the calcite surface. Geochimica et Cosmochimica Acta 62:2915−2922

doi: 10.1016/S0016-7037(98)00214-2
[108]

Ring SJ, Henehan MJ, Frings PJ, Blukis R, von Blanckenburg F. 2025. Late cenozoic rise in seawater δ11B not driven by increasing boron adsorption. Geochemistry, Geophysics, Geosystems 26:e2024GC011911

doi: 10.1029/2024GC011911
[109]

Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W. 2008. Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contributions to Mineralogy and Petrology 156:259−267

doi: 10.1007/s00410-008-0285-1
[110]

Grambow B. 1985. A general rate equation for nuclear waste glass corrosion. Proc. 44 Materials Research Society Symposium Proceedings, Symposium N – Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Online Proceedings, 1984. Boston: Materials Research Society . pp. 15–27 doi: 10.1557/PROC-44-15

[111]

Cailleteau C, Angeli F, Devreux F, Gin S, Jestin J, et al. 2008. Insight into silicate-glass corrosion mechanisms. Nature Materials 7:978−983

doi: 10.1038/nmat2301
[112]

Rébiscoul D, Frugier P, Gin S, Ayral A. 2005. Protective properties and dissolution ability of the gel formed during nuclear glass alteration. Journal of Nuclear Materials 342:26−34

doi: 10.1016/j.jnucmat.2005.03.018
[113]

Crank J. 1975. The mathematics of diffusion. Oxford: Oxford University Press

[114]

Boksay Z, Bouquet G, Dobos S. 1967. Diffusion processes in surface layers of glass. Physics and Chemistry of Glasses 8:140−144

[115]

Richter FM, Davis AM, DePaolo DJ, Watson EB. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta 67:3905−3923

doi: 10.1016/S0016-7037(03)00174-1
[116]

Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, et al. 2006. Kinetic isotopic fractionation during diffusion of ionic species in water. Geochimica et Cosmochimica Acta 70:277−289

doi: 10.1016/j.gca.2005.09.016
[117]

Bourg IC, Richter FM, Christensen JN, Sposito G. 2010. Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochimica et Cosmochimica Acta 74:2249−2256

doi: 10.1016/j.gca.2010.01.024