[1]

Mazloomi K, Gomes C. 2012. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 16:3024−3033

doi: 10.1016/j.rser.2012.02.028
[2]

Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP. 2008. Hydrogen nexus in a sustainable energy future. Energy & Environmental Science 1:79−85

doi: 10.1039/b810104n
[3]

Fan Z, Weng W, Zhou J, Gu D, Xiao W. 2021. Catalytic decomposition of methane to produce hydrogen: A review. Journal of Energy Chemistry 58:415−430

doi: 10.1016/j.jechem.2020.10.049
[4]

Bu E, Chen Y, Wang C, Cheng Z, Luo X, et al. 2019. Hydrogen production from bio-derived biphasic photoreforming over a raspberry-like amphiphilic Ag2O-TiO2/SiO2 catalyst. Chemical Engineering Journal 370:646−657

doi: 10.1016/j.cej.2019.03.259
[5]

Kothari R, Buddhi D, Sawhney RL. 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews 12:553−563

doi: 10.1016/j.rser.2006.07.012
[6]

Balat H, Kırtay E. 2010. Hydrogen from biomass – present scenario and future prospects. International Journal of Hydrogen Energy 35:7416−7426

doi: 10.1016/j.ijhydene.2010.04.137
[7]

Nikolaidis P, Poullikkas A. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67:597−611

doi: 10.1016/j.rser.2016.09.044
[8]

Dantas SC, Resende KA, Rossi RL, Assis AJ, Hori CE. 2012. Hydrogen production from oxidative reforming of methane on supported nickel catalysts: an experimental and modeling study. Chemical Engineering Journal 197:407−413

doi: 10.1016/j.cej.2012.05.043
[9]

Ávila-Neto CN, Dantas SC, Silva FA, Franco TV, Romanielo LL, et al. 2009. Hydrogen production from methane reforming: Thermodynamic assessment and autothermal reactor design. Journal of Natural Gas Science and Engineering 1:205−215

doi: 10.1016/j.jngse.2009.12.003
[10]

Dias JAC, Assaf JM. 2004. Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. Journal of Power Sources 130:106−110

doi: 10.1016/j.jpowsour.2003.11.053
[11]

Chanburanasiri N, Ribeiro AM, Rodrigues AE, Arpornwichanop A, Laosiripojana N, et al. 2011. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst. Industrial & Engineering Chemistry Research 50:13662−13671

doi: 10.1021/ie201226j
[12]

Bakenne A, Nuttall W, Kazantzis N. 2016. Sankey-Diagram-based insights into the hydrogen economy of today. International Journal of Hydrogen Energy 41:7744−7753

doi: 10.1016/j.ijhydene.2015.12.216
[13]

Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, et al. 2017. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917−920

doi: 10.1126/science.aao5023
[14]

Ashok J, Raju G, Reddy PS, Subrahmanyam M, Venugopal A. 2008. Catalytic decomposition of CH4 over Ni-Al2O3-SiO2 catalysts: Influence of pretreatment conditions for the production of H2. Journal of Natural Gas Chemistry 17:113−119

doi: 10.1016/s1003-9953(08)60036-5
[15]

Pudukudy M, Yaakob Z, Mazuki MZ, Takriff MS, Jahaya SS. 2017. One-pot sol-gel synthesis of MgO nanoparticles supported nickel and iron catalysts for undiluted methane decomposition into COx free hydrogen and nanocarbon. Applied Catalysis B: Environmental 218:298−316

doi: 10.1016/j.apcatb.2017.04.070
[16]

Marquardt T, Bode A, Kabelac S. 2020. Hydrogen production by methane decomposition: analysis of thermodynamic carbon properties and process evaluation. Energy Conversion and Management 221:113125

doi: 10.1016/j.enconman.2020.113125
[17]

Pudukudy M, Yaakob Z. 2015. Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes. Chemical Engineering Journal 262:1009−1021

doi: 10.1016/j.cej.2014.10.077
[18]

Fincke JR, Anderson RP, Hyde TA, Detering BA. 2002. Plasma pyrolysis of methane to hydrogen and carbon black. Industrial & Engineering Chemistry Research 41:1425−1435

doi: 10.1021/ie010722e
[19]

Chen Z, Zhang R, Xia G, Wu Y, Li H, et al. 2021. Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment. Energy 222:119953

doi: 10.1016/j.energy.2021.119953
[20]

Liang W, Yan H, Feng X, Chen C, Lin D, et al. 2020. NiMgAlMo catalyst derived from a guest-host MoO42− mediated layered double hydroxide: High performance for the methane decomposition reaction. Applied Catalysis A: General 597:117551

doi: 10.1016/j.apcata.2020.117551
[21]

Ashik UPM, Wan Daud WMA, Abbas HF. 2015. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – a review. Renewable and Sustainable Energy Reviews 44:221−256

doi: 10.1016/j.rser.2014.12.025
[22]

Tajuddin MM, Ideris A, Ismail M. 2019. In situ glycine-nitrate combustion synthesis of Ni-La/SiO2 catalyst for methane cracking. Industrial & Engineering Chemistry Research 58:531−538

doi: 10.1021/acs.iecr.8b03499
[23]

Sikander U, Samsudin MF, Sufian S, KuShaari K, Kait CF, et al. 2019. Tailored hydrotalcite-based Mg-Ni-Al catalyst for hydrogen production via methane decomposition: effect of nickel concentration and spinel-like structures. International Journal of Hydrogen Energy 44:14424−14433

doi: 10.1016/j.ijhydene.2018.10.224
[24]

Li Y, Li D, Wang G. 2011. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: a review. Catalysis Today 162:1−48

doi: 10.1016/j.cattod.2010.12.042
[25]

Farooqi AS, Yusuf M, Mohd Zabidi NA, Saidur R, Sanaullah K, et al. 2021. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts. International Journal of Hydrogen Energy 46:31024−31040

doi: 10.1016/j.ijhydene.2021.01.049
[26]

Rahmat N, Yaakob Z, Mat Hassan NS. 2021. Hydrogen rich syngas from CO2 reforming of methane with steam catalysed by facile fusion-impregnation of iron and cobalt loaded MgAl2O4 catalyst with minimal carbon deposits. Journal of the Energy Institute 96:61−74

doi: 10.1016/j.joei.2021.02.001
[27]

Ganesh I. 2013. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. International Materials Reviews 58:63−112

doi: 10.1179/1743280412Y.0000000001
[28]

Nuernberg GDB, Foletto EL, Campos CEM, Fajardo HV, Carreño NLV, et al. 2012. Direct decomposition of methane over Ni catalyst supported in magnesium aluminate. Journal of Power Sources 208:409−414

doi: 10.1016/j.jpowsour.2012.02.037
[29]

Yu S, Hu Y, Cui H, Cheng Z, Zhou Z. 2021. Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane. Chemical Engineering Science 232:116379

doi: 10.1016/j.ces.2020.116379
[30]

Jaiswar VK, Katheria S, Deo G, Kunzru D. 2017. Effect of Pt doping on activity and stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and high pressure condition. International Journal of Hydrogen Energy 42:18968−18976

doi: 10.1016/j.ijhydene.2017.06.096
[31]

Li D, Atake I, Shishido T, Oumi Y, Sano T, et al. 2007. Self-regenerative activity of Ni/Mg(Al)O catalysts with trace Ru during daily start-up and shut-down operation of CH4 steam reforming. Journal of Catalysis 250:299−312

doi: 10.1016/j.jcat.2007.06.002
[32]

Takenaka S, Shigeta Y, Tanabe E, Otsuka K. 2003. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts. Journal of Catalysis 220:468−477

doi: 10.1016/S0021-9517(03)00244-6
[33]

Torres D, Pinilla JL, Suelves I. 2018. CO-, Cu- and Fe-doped Ni/Al2O3 catalysts for the catalytic decomposition of methane into hydrogen and carbon nanofibers. Catalysts 8:300

doi: 10.3390/catal8080300
[34]

Ayillath Kutteri D, Wang IW, Samanta A, Li L, Hu J. 2018. Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono- and bimetallic 3d transition metal catalysts. Catalysis Science & Technology 8:858−869

doi: 10.1039/c7cy01927k
[35]

Sun Z, Gong Y, Cheng D, Sun Z. 2024. Reinforcing hydrogen and carbon nanotube co-production via Cr–O–Ni catalyzed methane decomposition. Journal of Materials Chemistry A 12:4893−4902

doi: 10.1039/D3TA06921D
[36]

Sun Z, Russell CK, Whitty KJ, Eddings EG, Dai J, et al. 2023. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Progress in Energy and Combustion Science 96:101045

doi: 10.1016/j.pecs.2022.101045
[37]

Chesnokov VV, Chichkan AS. 2009. Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst. International Journal of Hydrogen Energy 34:2979−2985

doi: 10.1016/j.ijhydene.2009.01.074
[38]

Bayat N, Rezaei M, Meshkani F. 2016. Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber. International Journal of Hydrogen Energy 41:1574−1584

doi: 10.1016/j.ijhydene.2015.10.053
[39]

Muraza O, Galadima A. 2015. A review on coke management during dry reforming of methane. International Journal of Energy Research 39:1196−1216

doi: 10.1002/er.3295
[40]

Theofanidis SA, Galvita VV, Sabbe M, Poelman H, Detavernier C, et al. 2017. Controlling the stability of a Fe-Ni reforming catalyst: structural organization of the active components. Applied Catalysis B: Environmental 209:405−416

doi: 10.1016/j.apcatb.2017.03.025
[41]

Sun Z, Chen S, Hu J, Chen A, Rony AH, et al. 2018. Ca2Fe2O5: a promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Applied Energy 211:431−442

doi: 10.1016/j.apenergy.2017.11.005
[42]

Sun Z, Cai T, Russell CK, Johnson JK, Ye RP, et al. 2020. Highly efficient methane decomposition to H2 and CO2 reduction to CO via redox looping of Ca2FexAl2-xO5 supported NiyFe3-yO4 nanoparticles. Applied Catalysis B: Environmental 271:118938

doi: 10.1016/j.apcatb.2020.118938
[43]

Azancot L, Bobadilla LF, Centeno MA, Odriozola JA. 2021. Effect of potassium loading on basic properties ofNi/MgAl2O4 catalyst for CO2 reforming of methane. Journal of CO2 Utilization 52:101681

doi: 10.1016/j.jcou.2021.101681
[44]

Theofanidis SA, Galvita VV, Poelman H, Dharanipragada NVRA, Longo A, et al. 2018. Fe-containing magnesium aluminate support for stability and carbon control during methane reforming. ACS Catalysis 8:5983−5995

doi: 10.1021/acscatal.8b01039
[45]

Dharanipragada NVRA, Buelens LC, Poelman H, De Grave E, Galvita VV, et al. 2015. Mg-Fe-Al-O for advanced CO2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity. Journal of Materials Chemistry A 3:16251−16262

doi: 10.1039/c5ta02289d
[46]

Ortega KF, Rein D, Lüttmann C, Heese J, Özcan F, et al. 2017. Ammonia decomposition and synthesis over multinary magnesioferrites: Promotional effect of Ga on Fe catalysts for the decomposition reaction. Chemcatchem 9:659−671

doi: 10.1002/cctc.201601355
[47]

Kumar GM, Cho HD, Lee DJ, Kumar JR, Siva C, et al. 2021. Elevating the charge separation of MgFe2O4 nanostructures by Zn ions for enhanced photocatalytic and photoelectrochemical water splitting. Chemosphere 283:131134

doi: 10.1016/j.chemosphere.2021.131134
[48]

Zhang M, Yu F, Li J, Chen K, Yao Y, et al. 2018. High CO methanation performance of two-dimensional Ni/MgAl layered double oxide with enhanced oxygen vacancies via flash nanoprecipitation. Catalysts 8:363

doi: 10.3390/catal8090363
[49]

Rastegarpanah A, Rezaei M, Meshkani F, Zhang K, Zhao X, et al. 2019. Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Applied Catalysis B: Environmental 248:515−525

doi: 10.1016/j.apcatb.2019.01.067
[50]

Qian JX, Liu DB, Basset JM, Zhou L. 2021. Methane decomposition to produce hydrogen and carbon nanomaterials over costless, iron-containing catalysts. Journal of Cleaner Production 320:128879

doi: 10.1016/j.jclepro.2021.128879
[51]

Kim H, Eissa AA-S, Kim SB, Lee H, Kim W, et al. 2021. One-pot synthesis of a highly mesoporous Ni/MgAl2O4 spinel catalyst for efficient steam methane reforming: influence of inert annealing. Catalysis Science & Technology 11:4447−4458

doi: 10.1039/d1cy00485a
[52]

Jabbour K, Massiani P, Davidson A, Casale S, El Hassan N. 2017. Ordered mesoporous "one-pot" synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Applied Catalysis B: Environmental 201:527−542

doi: 10.1016/j.apcatb.2016.08.009
[53]

Rastegarpanah A, Meshkani F, Rezaei M. 2017. Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO·Al2O3 catalysts. International Journal of Hydrogen Energy 42:16476−16488

doi: 10.1016/j.ijhydene.2017.05.044
[54]

Yu Y, Cui M, Li M, Zhao N, Long Z, et al. 2014. Rare earth modified Ni-Si catalysts for hydrogen production from methane decomposition. Journal of Rare Earths 32:709−714

doi: 10.1016/S1002-0721(14)60130-7
[55]

Zhang J, Ren M, Li X, Hao Q, Chen H, et al. 2020. Ni-based catalysts prepared for CO2 reforming and decomposition of methane. Energy Conversion and Management 205:112419

doi: 10.1016/j.enconman.2019.112419
[56]

Ashok J, Kawi S. 2014. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis 4:289−301

doi: 10.1021/cs400621p
[57]

Theofanidis SA, Galvita VV, Poelman H, Marin GB. 2015. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catalysis 5:3028−3039

doi: 10.1021/acscatal.5b00357
[58]

Kim SM, Abdala PM, Margossian T, Hosseini D, Foppa L, et al. 2017. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. Journal of the American Chemical Society 139:1937−1949

doi: 10.1021/jacs.6b11487
[59]

Zhang X, Pei C, Chang X, Chen S, Liu R, et al. 2020. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. Journal of the American Chemical Society 142:11540−11549

doi: 10.1021/jacs.0c04643
[60]

Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances A32:751−767

doi: 10.1107/S0567739476001551
[61]

Hirata T. 2000. Oxygen Position, Octahedral Distortion, and Bond-Valence Parameter from Bond Lengths in Ti1−xSnxO2 (0 ≤ x ≤ 1). Journal of the American Ceramic Society 83:3205−3207

doi: 10.1111/j.1151-2916.2000.tb01706.x