[1]

Young SL, Frongillo EA, Jamaluddine Z, Melgar-Quiñonez H, Pérez-Escamilla R, et al. 2021. Perspective: the importance of water security for ensuring food security, good nutrition, and well-being. Advances in Nutrition 12:1058−1073

doi: 10.1093/advances/nmab003
[2]

Meese AF, Kim DJ, Wu X, Le L, Napier C, et al. 2022. Opportunities and challenges for industrial water treatment and reuse. ACS ES&T Engineering 2:465−488

doi: 10.1021/acsestengg.1c00282
[3]

Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, et al. 2023. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. Environmental Pollution 327:121572

doi: 10.1016/j.envpol.2023.121572
[4]

Nishshanka GKSH, Thevarajah B, Nimarshana PHV, Prajapati SK, Ariyadasa TU. 2023. Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects. Journal of Water Process Engineering 56:104248

doi: 10.1016/j.jwpe.2023.104248
[5]

Intisar A, Ramzan A, Hafeez S, Hussain N, Irfan M, et al. 2023. Adsorptive and photocatalytic degradation potential of porous polymeric materials for removal of pesticides, pharmaceuticals, and dyes-based emerging contaminants from water. Chemosphere 336:139203

doi: 10.1016/j.chemosphere.2023.139203
[6]

Hacıosmanoğlu GG, Mejías C, Martín J, Santos JL, Aparicio I, et al. 2022. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. Journal of Environmental Management 317:115397

doi: 10.1016/j.jenvman.2022.115397
[7]

Kuncoro EP, Mitha Isnadina DR, Darmokoesoemo H, Dzembarahmatiny F, Kusuma HS. 2018. Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data in Brief 16:354−360

doi: 10.1016/j.dib.2017.11.060
[8]

Saini K, Singh J, Malik S, Saharan Y, Goyat R, et al. 2024. Metal-organic frameworks: a promising solution for efficient removal of heavy metal ions and organic pollutants from industrial wastewater. Journal of Molecular Liquids 399:124365

doi: 10.1016/j.molliq.2024.124365
[9]

Kumar N, Pandey A, Rosy, Sharma YC. 2023. A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. Journal of Water Process Engineering 54:104054

doi: 10.1016/j.jwpe.2023.104054
[10]

Luo J, Fu K, Yu D, Hristovski KD, Westerhoff P, et al. 2021. Review of advances in engineering nanomaterial adsorbents for metal removal and recovery from water: synthesis and microstructure impacts. ACS ES&T Engineering 1:623−661

doi: 10.1021/acsestengg.0c00174
[11]

Ewis D, Ba-Abbad MM, Benamor A, El-Naas MH. 2022. Adsorption of organic water pollutants by clays and clay minerals composites: a comprehensive review. Applied Clay Science 229:106686

doi: 10.1016/j.clay.2022.106686
[12]

Mian MM, Ao W, Deng S. 2023. Sludge-based biochar adsorbent: Pore tuning mechanisms, challenges, and role in carbon sequestration. Biochar 5:83

doi: 10.1007/s42773-023-00288-w
[13]

Berazneva J, Woolf D, Lee DR. 2021. Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: the role of feedstock provision in economic viability. Energy Economics 93:105031

doi: 10.1016/j.eneco.2020.105031
[14]

Jia W, Qin W, Zhang Q, Wang X, Ma Y, et al. 2018. Evaluation of crop residues and manure production and their geographical distribution in China. Journal of Cleaner Production 188:954−965

doi: 10.1016/j.jclepro.2018.03.300
[15]

Qiu M, Liu L, Ling Q, Cai Y, Yu S, et al. 2022. Biochar for the removal of contaminants from soil and water: a review. Biochar 4:19

doi: 10.1007/s42773-022-00146-1
[16]

Alegbeleye OO, Sant’Ana AS. 2020. Manure-borne pathogens as an important source of water contamination: an update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. International Journal of Hygiene and Environmental Health 227:113524

doi: 10.1016/j.ijheh.2020.113524
[17]

Wang M, Cao W, Sun C, Sun Z, Miao Y, et al. 2019. To distinguish the primary characteristics of agro-waste biomass by the principal component analysis: an investigation in East China. Waste Management 90:100−120

doi: 10.1016/j.wasman.2019.04.046
[18]

Xie S, Zhang T, You S, Mukherjee S, Pu M, et al. 2025. Applied machine learning for predicting the properties and carbon and phosphorus fate of pristine and engineered hydrochar. Biochar 7:19

doi: 10.1007/s42773-024-00404-4
[19]

Yan C, Li J, Sun Z, Wang X, Xia S. 2024. Mechanistic insights into removal of pollutants in adsorption and advanced oxidation processes by livestock manure derived biochar: a review. Separation and Purification Technology 346:127457

doi: 10.1016/j.seppur.2024.127457
[20]

Chen X, Wu B, Yang W, Zhao G, Han J, et al. 2023. Biochar as a multifunctional material facilitate the organohalide remediation: a state-of-the-art review. Chemical Engineering Journal 460:141700

doi: 10.1016/j.cej.2023.141700
[21]

OECD and Food and Agriculture Organization of the United Nations. 2021. OECD-FAO Agricultural Outlook 2021−2030. Paris, France: Organi-sation for Economic Co-operation and Development (OECD). doi: 10.1787/19428846-en

[22]

Food and Agriculture Organization of the United Nations. 2019. Livestock manure. Roma, Italy: FAO. www.fao.org/faostat/en/#data/EMN

[23]

Liu Z, Wang X. 2020. Manure treatment and utilization in production systems. In Animal Agriculture, ed. Bazer FW, Lamb GC, Wu G. Cambridge: Academic Press. pp. 455−467 doi: 10.1016/B978-0-12-817052-6.00026-4

[24]

Leitner S, Ring D, Wanyama GN, Korir D, Pelster DE, et al. 2021. Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya. Waste Management 126:209−220

doi: 10.1016/j.wasman.2021.03.014
[25]

Liu Q, He X, Luo G, Wang K, Li D. 2022. Deciphering the dominant components and functions of bacterial communities for lignocellulose degradation at the composting thermophilic phase. Bioresource Technology 348:126808

doi: 10.1016/j.biortech.2022.126808
[26]

Trabue SL, Kerr BJ, Scoggin KD, Andersen D, van Weelden M. 2021. Swine diets impact manure characteristics and gas emissions: Part I protein level. Science of The Total Environment 755:142528

doi: 10.1016/j.scitotenv.2020.142528
[27]

Su X, Zhang T, Zhao J, Mukherjee S, Alotaibi NM, et al. 2024. Phosphorus fraction in hydrochar from co-hydrothermal carbonization of swine manure and rice straw: an optimization analysis based on response surface methodology. Water 16:2208

doi: 10.3390/w16152208
[28]

Guo Z, Zhang J, Fan J, Yang X, Yi Y, et al. 2019. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of The Total Environment 660:1029−1037

doi: 10.1016/j.scitotenv.2019.01.051
[29]

Foong SY, Liew RK, Lee CL, Tan WP, Peng W, et al. 2022. Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products. Journal of Hazardous Materials 421:126774

doi: 10.1016/j.jhazmat.2021.126774
[30]

Li J, Cao L, Yuan Y, Wang R, Wen Y, et al. 2018. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresource Technology 247:794−803

doi: 10.1016/j.biortech.2017.09.120
[31]

Leng L, Xiong Q, Yang L, Li H, Zhou Y, et al. 2021. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763:144204

doi: 10.1016/j.scitotenv.2020.144204
[32]

Iwuozor KO, Emenike EC, Omonayin EO, Bamigbola JO, Ojo HT, et al. 2023. Unlocking the hidden value of pods: A review of thermochemical conversion processes for biochar production. Bioresource Technology Reports 22:101488

doi: 10.1016/j.biteb.2023.101488
[33]

Yin G, Zhang F, Gao Y, He W, Zhang Q, et al. 2023. Increase of bio-char yield by adding potassium salt during biomass pyrolysis. Journal of the Energy Institute 110:101342

doi: 10.1016/j.joei.2023.101342
[34]

Bikane K, Yu J, Long X, Paterson N, Millan M. 2020. Linking char reactivity to structural and morphological evolution during high pressure pyrolysis of Morupule coal. Chemical Engineering Science: X 8:100072

doi: 10.1016/j.cesx.2020.100072
[35]

Wang S, Zhang H, Huang H, Xiao R, Li R, et al. 2020. Influence of temperature and residence time on characteristics of biochars derived from agricultural residues: a comprehensive evaluation. Process Safety and Environmental Protection 139:218−229

doi: 10.1016/j.psep.2020.03.028
[36]

Lee J, Sarmah AK, Kwon EE. 2019. Production and formation of biochar. In Biochar from Biomass and Waste, ed. Ok YS, Tsang DCW, Bolan N, Novak JM. Amsterdam: Elsevier. pp. 3−18 doi: 10.1016/b978-0-12-811729-3.00001-7

[37]

Safdari MS, Amini E, Weise DR, Fletcher TH. 2019. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 242:295−304

doi: 10.1016/j.fuel.2019.01.040
[38]

Ighalo JO, Iwuchukwu FU, Eyankware OE, Iwuozor KO, Olotu K, et al. 2022. Flash pyrolysis of biomass: a review of recent advances. Clean Technologies and Environmental Policy 24:2349−63

doi: 10.1007/s10098-022-02339-5
[39]

Qambrani NA, Rahman MM, Won S, Shim S, Ra C. 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews 79:255−273

doi: 10.1016/j.rser.2017.05.057
[40]

Shafizadeh A, Rastegari H, Shahbeik H, Mobli H, Pan J, et al. 2023. A critical review of the use of nanomaterials in the biomass pyrolysis process. Journal of Cleaner Production 400:136705

doi: 10.1016/j.jclepro.2023.136705
[41]

Selvanathan M, Yann KT, Chung CH, Selvarajoo A, Arumugasamy SK, et al. 2017. Adsorption of copper(II) ion from aqueous solution using biochar derived from rambutan (Nepheliumlappaceum) peel: feedforward neural network modelling study. Water, Air, & Soil Pollution 228:299

doi: 10.1007/s11270-017-3472-8
[42]

Akhil D, Lakshmi D, Kartik A, Vo DVN, Arun J, et al. 2021. Production, characterization, activation and environmental applications of engineered biochar: a review. Environmental Chemistry Letters 19:2261−2297

doi: 10.1007/s10311-020-01167-7
[43]

Panwar NL, Pawar A. 2022. Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Conversion and Biorefinery 12:925−947

doi: 10.1007/s13399-020-00870-3
[44]

Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, et al. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148:276−291

doi: 10.1016/j.chemosphere.2016.01.043
[45]

Lopez-Tenllado FJ, Motta IL, Hill JM. 2021. Modification of biochar with high-energy ball milling: Development of porosity and surface acid functional groups. Bioresource Technology Reports 15:100704

doi: 10.1016/j.biteb.2021.100704
[46]

Shu T, Lu P, He N. 2013. Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresource Technology 136:182−187

doi: 10.1016/j.biortech.2013.02.087
[47]

Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. 2017. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology 246:34−47

doi: 10.1016/j.biortech.2017.07.082
[48]

Venkatachalam CD, Sekar S, Sengottian M, Ravichandran SR, Bhuvaneshwaran P. 2023. A critical review of the production, activation, and morphological characteristic study on functionalized biochar. Journal of Energy Storage 67:107525

doi: 10.1016/j.est.2023.107525
[49]

Shahib II, Ifthikar J, Oyekunle DT, Elkhlifi Z, Jawad A, et al. 2022. Influences of chemical treatment on sludge derived biochar; Physicochemical properties and potential sorption mechanisms of lead (II) and methylene blue. Journal of Environmental Chemical Engineering 10:107725

doi: 10.1016/j.jece.2022.107725
[50]

Li B, Li K. 2019. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism. Chemosphere 220:28−39

doi: 10.1016/j.chemosphere.2018.12.099
[51]

Hasegawa G, Deguchi T, Kanamori K, Kobayashi Y, Kageyama H, et al. 2015. High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chemistry of Materials 27:4703−4712

doi: 10.1021/acs.chemmater.5b01349
[52]

Wang RZ, Huang DL, Zhang C, Liu YG, Zeng GM, et al. 2019. Insights into the effect of chemical treatment on the physicochemical characteristics and adsorption behavior of pig manure-derived biochars. Environmental Science and Pollution Research 26:1962−1972

doi: 10.1007/s11356-018-3772-6
[53]

Anthonysamy SI, Lahijani P, Mohammadi M, Mohamed AR. 2022. Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide. International Journal of Environmental Science and Technology 19:7127−7140

doi: 10.1007/s13762-021-03617-3
[54]

Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, et al. 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58:5538−5544

doi: 10.1021/jf9044217
[55]

Chen W, Gong M, Li K, Xia M, Chen Z, et al. 2020. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Applied Energy 278:115730

doi: 10.1016/j.apenergy.2020.115730
[56]

Han Z, Sani B, Mrozik W, Obst M, Beckingham B, et al. 2015. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research 70:394−403

doi: 10.1016/j.watres.2014.12.016
[57]

Liu Y, Sohi SP, Liu S, Guan J, Zhou J, et al. 2019. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. Journal of Environmental Management 235:276−281

doi: 10.1016/j.jenvman.2019.01.045
[58]

Zhang Y, Liu N, Yang Y, Li J, Wang S, et al. 2020. Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 600:124926

doi: 10.1016/j.colsurfa.2020.124926
[59]

Han Y, Cao X, Ouyang X, Sohi SP, Chen J. 2016. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere 145:336−341

doi: 10.1016/j.chemosphere.2015.11.050
[60]

Shi M, Min X, Ke Y, Lin Z, Yang Z, et al. 2021. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Science of the Total Environment 752:141930

doi: 10.1016/j.scitotenv.2020.141930
[61]

Alhashimi HA, Aktas CB. 2017. Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling 118:13−26

doi: 10.1016/j.resconrec.2016.11.016
[62]

Hadjittofi L, Prodromou M, Pashalidis I. 2014. Activated biochar derived from cactus fibres—Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource Technology 159:460−464

doi: 10.1016/j.biortech.2014.03.073
[63]

Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy JL. 2016. Preparation of a porous biochar from the acid activation of pork bones. Food and Bioproducts Processing 98:341−353

doi: 10.1016/j.fbp.2016.03.003
[64]

Zhang C, Li Y, Shen H, Shuai D. 2021. Simultaneous coupling of photocatalytic and biological processes: a promising synergistic alternative for enhancing decontamination of recalcitrant compounds in water. Chemical Engineering Journal 403:126365

doi: 10.1016/j.cej.2020.126365
[65]

Wang Y, Gao Q, You Q, Liao G, Xia H, et al. 2016. Porous polyimide framework: a novel versatile adsorbent for highly efficient removals of azo dye and antibiotic. Reactive and Functional Polymers 103:9−16

doi: 10.1016/j.reactfunctpolym.2016.04.004
[66]

Wang CC, Li JR, Lv XL, Zhang YQ, Guo G. 2014. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science 7:2831−2867

doi: 10.1039/C4EE01299B
[67]

Choudhary S, Sharma K, Kumar V, Sharma V. 2024. RSM-CCD directed modeling and optimization of a low-cost adsorbent based on sodium dodecyl sulfate for the selective removal of malachite green and methylene blue dyes: Kinetics, isotherm, and thermodynamics analysis. Microchemical Journal 205:111158

doi: 10.1016/j.microc.2024.111158
[68]

Wang Y, Zhang H, Chen L. 2011. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor. Catalysis Today 175:283−292

doi: 10.1016/j.cattod.2011.06.001
[69]

Al-Jabari MH, Sulaiman S, Ali S, Barakat R, Mubarak A, et al. 2019. Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. Journal of Molecular Liquids 291:111249

doi: 10.1016/j.molliq.2019.111249
[70]

Peng X, Hu F, Zhang T, Qiu F, Dai H. 2018. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study. Bioresource Technology 249:924−934

doi: 10.1016/j.biortech.2017.10.095
[71]

McYotto F, Wei Q, Macharia DK, Huang M, Shen C, et al. 2021. Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal 405:126674

doi: 10.1016/j.cej.2020.126674
[72]

Kishor R, Purchase D, Saratale GD, Romanholo Ferreira LF, Hussain CM, et al. 2021. Degradation mechanism and toxicity reduction of methyl orange dye by a newly isolated bacterium Pseudomonas aeruginosa MZ520730. Journal of Water Process Engineering 43:102300

doi: 10.1016/j.jwpe.2021.102300
[73]

Sharma G, Sharma S, Kumar A, Naushad M, Du B, et al. 2019. Honeycomb structured activated carbon synthesized from Pinus roxburghii cone as effective bioadsorbent for toxic malachite green dye. Journal of Water Process Engineering 32:100931

doi: 10.1016/j.jwpe.2019.100931
[74]

Oladoye PO, Ajiboye TO, Wanyonyi WC, Omotola EO, Oladipo ME. 2023. Ozonation, electrochemical, and biological methods for the remediation of malachite green dye wastewaters: a mini review. Sustainable Chemistry for the Environment 3:100033

doi: 10.1016/j.scenv.2023.100033
[75]

Saya L, Malik V, Gautam D, Gambhir G, Balendra, et al. 2022. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Science of The Total Environment 813:152529

doi: 10.1016/j.scitotenv.2021.152529
[76]

Han CH, Park HD, Kim SB, Yargeau V, Choi JW, et al. 2020. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Water Research 172:115514

doi: 10.1016/j.watres.2020.115514
[77]

Leichtweis J, Vieira Y, Welter N, Silvestri S, Dotto GL, et al. 2022. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Safety and Environmental Protection 160:25−40

doi: 10.1016/j.psep.2022.01.085
[78]

Kayani KF. 2025. Tetracycline in the environment: Toxicity, uses, occurrence, detection, and removal by covalent organic frameworks − Recent advances and challenges. Separation and Purification Technology 364:132418

doi: 10.1016/j.seppur.2025.132418
[79]

Zhang H, Quan H, Yin S, Sun L, Lu H. 2022. Unraveling the toxicity associated with ciprofloxacin biodegradation in biological wastewater treatment. Environmental Science & Technology 56:15941−15952

doi: 10.1021/acs.est.2c04387
[80]

Mahmoud MAM, Abdel-Mohsein HS. 2019. Hysterical tetracycline in intensive poultry farms accountable for substantial gene resistance, health and ecological risk in Egypt- manure and fish. Environmental Pollution 255:113039

doi: 10.1016/j.envpol.2019.113039
[81]

Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. 2022. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering 16:100678

doi: 10.1016/j.rineng.2022.100678
[82]

Waghchaure RH, Adole VA, Jagdale BS. 2022. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorganic Chemistry Communications 143:109764

doi: 10.1016/j.inoche.2022.109764
[83]

Balasurya S, Okla MK, Mohebaldin A, Al-ghamdi AA, Abdel-Maksoud MA, et al. 2022. Self-assembling of 3D layered flower architecture of BiOI modified MgCr2O4 nanosphere for wider spectrum visible-light photocatalytic degradation of rhodamine B and malachite green: Mechanism, pathway, reactive sites and toxicity prediction. Journal of Environmental Management 308:114614

doi: 10.1016/j.jenvman.2022.114614
[84]

Li S, Huang T, Du P, Liu W, Hu J. 2020. Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: experimental and theoretical evidences. Water Research 185:116286

doi: 10.1016/j.watres.2020.116286
[85]

Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, et al. 2024. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. Environmental Research 258:119440

doi: 10.1016/j.envres.2024.119440
[86]

Zeng X, Xu X, Boezen HM, Huo X. 2016. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere 148:408−415

doi: 10.1016/j.chemosphere.2015.10.078
[87]

Chowdhury IR, Chowdhury S, Mazumder MAJ, Al-Ahmed A. 2022. Removal of lead ions (Pb2+) from water and wastewater: A review on the low-cost adsorbents. Applied Water Science 12:185

doi: 10.1007/s13201-022-01703-6
[88]

Mallik AK, Kabir SMF, Bin Abdur Rahman F, Sakib MN, Efty SS, et al. 2022. Cu(II) removal from wastewater using chitosan-based adsorbents: A review. Journal of Environmental Chemical Engineering 10:108048

doi: 10.1016/j.jece.2022.108048
[89]

Al-Saydeh SA, El-Naas MH, Zaidi SJ. 2017. Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry 56:35−44

doi: 10.1016/j.jiec.2017.07.026
[90]

Zhang W, Xia L, Deen KM, Asselin E, Ma B, et al. 2023. Enhanced removal of cadmium from wastewater by electro-assisted cementation process: A peculiar Cd reduction on Zn anode. Chemical Engineering Journal 452:139692

doi: 10.1016/j.cej.2022.139692
[91]

Tan Y, Wan X, Ni X, Wang L, Zhou T, et al. 2022. Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar. Chemosphere 289:133251

doi: 10.1016/j.chemosphere.2021.133251
[92]

Chen ZL, Zhang JQ, Huang L, Yuan ZH, Li ZJ, et al. 2019. Removal of Cd and Pb with biochar made from dairy manure at low temperature. Journal of Integrative Agriculture 18:201−210

doi: 10.1016/S2095-3119(18)61987-2
[93]

Xu D, Tan XL, Chen CL, Wang XK. 2008. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science 41:37−46

doi: 10.1016/j.clay.2007.09.004
[94]

Khormaei M, Nasernejad B, Edrisi M, Eslamzadeh T. 2007. Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials 149:269−274

doi: 10.1016/j.jhazmat.2007.03.074
[95]

Hu XJ, Liu YG, Zeng GM, You SH, Wang H, et al. 2014. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide–supported sulfanilic acid. Journal of Colloid and Interface Science 435:138−144

doi: 10.1016/j.jcis.2014.08.054
[96]

Degen A, Kosec M. 2000. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society 20:667−673

doi: 10.1016/S0955-2219(99)00203-4
[97]

Gaur VK, Sharma P, Sirohi R, Awasthi MK, Dussap CG, et al. 2020. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. Journal of Hazardous Materials 398:123019

doi: 10.1016/j.jhazmat.2020.123019
[98]

Dong W, Xing J, Chen Q, Huang Y, Wu M, et al. 2024. Hydrogen bonds between the oxygen-containing functional groups of biochar and organic contaminants significantly enhance sorption affinity. Chemical Engineering Journal 499:156654

doi: 10.1016/j.cej.2024.156654
[99]

Sullivan GL, Prigmore RM, Knight P, Godfrey AR. 2019. Activated carbon biochar from municipal waste as a sorptive agent for the removal of polyaromatic hydrocarbons (PAHs), phenols and petroleum based compounds in contaminated liquids. Journal of Environmental Management 251:109551

doi: 10.1016/j.jenvman.2019.109551
[100]

Ahmed MB, Zhou JL, Ngo HH, Johir MAH, Sun L, et al. 2018. Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. Journal of Hazardous Materials 360:270−278

doi: 10.1016/j.jhazmat.2018.08.005
[101]

Stöhr M, Sadhukhan M, Al-Hamdani YS, Hermann J, Tkatchenko A. 2021. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials. Nature Communications 12:137

doi: 10.1038/s41467-020-20473-w
[102]

Abdul G, Zhu X, Chen B. 2017. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chemical Engineering Journal 319:9−20

doi: 10.1016/j.cej.2017.02.074
[103]

Tsui L, Roy WR. 2008. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution. Bioresource Technology 99:5673−5678

doi: 10.1016/j.biortech.2007.10.026
[104]

Dou S, Ke XX, Shao ZD, Zhong LB, Zhao QB, et al. 2022. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin. Chemosphere 287:131962

doi: 10.1016/j.chemosphere.2021.131962
[105]

Xing J, Dong W, Liang N, Huang Y, Wu M, et al . 2023. Sorption of organic contaminants by biochars with multiple porous structures: Experiments and molecular dynamics simulations mediated by three-dimensional models. Journal of Hazardous Materials 458:131953

doi: 10.1016/j.jhazmat.2023.131953
[106]

Wei L, Huang Y, Huang L, Li Y, Huang Q, et al. 2020. The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environmental Research 184:109324

doi: 10.1016/j.envres.2020.109324
[107]

Wang Z, Jang HM. 2022. Comparative study on characteristics and mechanism of levofloxacin adsorption on swine manure biochar. Bioresource Technology 351:127025

doi: 10.1016/j.biortech.2022.127025
[108]

Civiš S, Lamanec M, Špirko V, Kubišta J, Špet’ko M, et al. 2023. Hydrogen bonding with hydridic hydrogen–Experimental low-temperature IR and computational study: is a revised definition of hydrogen bonding appropriate? Journal of the American Chemical Society 145:8550−8559

doi: 10.1021/jacs.3c00802
[109]

Chen J, Zhou J, Zheng W, Leng S, Ai Z, et al. 2024. A complete review on the oxygen-containing functional groups of biochar: Formation mechanisms, detection methods, engineering, and applications. Science of the Total Environment 946:174081

doi: 10.1016/j.scitotenv.2024.174081
[110]

Lin Z, Jin L, Liu Y, Wang Y. 2023. Hydrogen bonding donor/acceptor active sites exposed on imide-functionalized carbon dots aid in enhancing arsenic adsorption performance. Chemical Engineering Journal 459:141540

doi: 10.1016/j.cej.2023.141540
[111]

Zhuo SN, Dai TC, Ren HY, Liu BF. 2022. Simultaneous adsorption of phosphate and tetracycline by calcium modified corn stover biochar: Performance and mechanism. Bioresource Technology 359:127477

doi: 10.1016/j.biortech.2022.127477
[112]

Flórez E, Jimenez-Orozco C, Acelas N. 2024. Unravelling the influence of surface functional groups and surface charge on heavy metal adsorption onto carbonaceous materials: an in-depth DFT study. Materials Today Communications 39:108647

doi: 10.1016/j.mtcomm.2024.108647
[113]

Kah M, Sigmund G, Xiao F, Hofmann T. 2017. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research 124:673−692

doi: 10.1016/j.watres.2017.07.070
[114]

Xiong J, Xu J, Zhou M, Zhao W, Chen C, et al. 2021. Quantitative characterization of the site density and the charged state of functional groups on biochar. ACS Sustainable Chemistry & Engineering 9:2600−2608

doi: 10.1021/acssuschemeng.0c09051
[115]

Reguyal F, Sarmah AK. 2018. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol. Science of The Total Environment 628-629:722−730

doi: 10.1016/j.scitotenv.2018.01.323
[116]

Fan S, Wang Y, Wang Z, Tang J, Tang J, et al. 2017. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering 5:601−611

doi: 10.1016/j.jece.2016.12.019
[117]

Zhao J, Gao F, Sun Y, Fang W, Li X, et al. 2021. New use for biochar derived from bovine manure for tetracycline removal. Journal of Environmental Chemical Engineering 9:105585

doi: 10.1016/j.jece.2021.105585
[118]

Zhang P, Li Y, Cao Y, Han L. 2019. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresource Technology 285:121348

doi: 10.1016/j.biortech.2019.121348
[119]

Salazar-Rabago JJ, Leyva-Ramos R, Rivera-Utrilla J, Ocampo-Perez R, Cerino-Cordova FJ. 2017. Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research 27:32−40

doi: 10.1016/j.serj.2016.11.009
[120]

Wang H, Fang C, Wang Q, Chu Y, Song Y, et al. 2018. Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances 8:16260−16268

doi: 10.1039/C8RA01454J
[121]

Shaha CK, Karmaker S, Saha TK. 2024. Efficient adsorptive removal of levofloxacin using sulfonated graphene oxide: Adsorption behavior, kinetics, and thermodynamics. Heliyon 10

doi: 10.1016/j.heliyon.2024.e40319
[122]

Roca Jalil ME, Baschini M, Sapag K. 2015. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science 114:69−76

doi: 10.1016/j.clay.2015.05.010
[123]

Yuan J, Wen Y, Dionysiou DD, Sharma VK, Ma X . 2022. Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review. Chemical Engineering Journal 429:132313

doi: 10.1016/j.cej.2021.132313
[124]

Hu Y, Zhu Y, Zhang Y, Lin T, Zeng G, et al. 2019. An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresource Technology 288:121511

doi: 10.1016/j.biortech.2019.121511
[125]

Noyes PD, Miranda D, Oliveira de Carvalho G, Perfetti-Bolaño A, Guida Y, et al. 2025. Climate change drives persistent organic pollutant dynamics in marine environments. Communications Earth & Environment 6:363

doi: 10.1038/s43247-025-02348-4
[126]

Ahmad A, Khan N, Giri BS, Chowdhary P, Chaturvedi P. 2020. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresource Technology 306:123202

doi: 10.1016/j.biortech.2020.123202
[127]

Huang W, Chen J, Zhang J. 2018. Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure. Environmental Science and Pollution Research 25:29256−29266

doi: 10.1007/s11356-018-2906-1
[128]

Yu J, Zhang X, Wang D, Li P. 2018. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology 77:1303−1312

doi: 10.2166/wst.2018.003
[129]

Lu Y, Chen J, Bai Y, Gao J, Peng M. 2019. Adsorption properties of methyl orange in water by sheep manure biochar. Polish Journal of Environmental Studies 28:3791−3797

doi: 10.15244/pjoes/96264
[130]

Dilekoğlu MF. 2022. Malachite green adsorption from aqueous solutions onto biochar derived from sheep manure: Adsorption kinetics, isotherm, thermodynamic, and mechanism. International Journal of Phytoremediation 24:436−446

doi: 10.1080/15226514.2021.1951656
[131]

Sharma P, Sharma S, Sharma SK, Shao Y, Guo F, et al. 2024. Evaluation of optimized conditions for the adsorption of malachite green by SnO2-modified sugarcane bagasse biochar nanocomposites. RSC Advances 14:29201−29214

doi: 10.1039/D4RA05442C
[132]

Wu Z, Zhang H, Ali E, Shahab A, Huang H, et al. 2023. Synthesis of novel magnetic activated carbon for effective Cr(VI) removal via synergistic adsorption and chemical reduction. Environmental Technology & Innovation 30:103092

doi: 10.1016/j.eti.2023.103092
[133]

Zhu Y, Yi B, Yuan Q, Wu Y, Wang M, et al. 2018. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Advances 8:19917−19929

doi: 10.1039/C8RA03018A
[134]

Hao H, Zhang Q, Qiu Y, Meng L, Wei X, et al. 2020. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: Synergism between Fe and Mn. Journal of Water Process Engineering 37:101470

doi: 10.1016/j.jwpe.2020.101470
[135]

Wang K, Peng N, Sun J, Lu G, Chen M, et al. 2020. Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue. Science of the Total Environment 729:139055

doi: 10.1016/j.scitotenv.2020.139055
[136]

Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, et al. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251:126351

doi: 10.1016/j.chemosphere.2020.126351
[137]

Yang Y, Cai S, Mo C, Dong J, Chen S, Wen Z. 2025. Profiles of antibiotic resistome risk in diverse water environments. Communications Earth & Environment 6:158

doi: 10.1038/s43247-025-02139-x
[138]

Adedeji OM, Jahan K. 2023. Removal of pollutants from aqueous product of Co-hydrothermal liquefaction: Adsorption and isotherm studies. Chemosphere 321:138165

doi: 10.1016/j.chemosphere.2023.138165
[139]

He J, Xiao Y, Tang J, Chen H, Sun H. 2019. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Science of the Total Environment 690:768−777

doi: 10.1016/j.scitotenv.2019.07.043
[140]

Huang W, Chen J, Zhang J. 2020. Removal of ciprofloxacin from aqueous solution by rabbit manure biochar. Environmental Technology 41:1380−1390

doi: 10.1080/09593330.2018.1535628
[141]

Gupta VK, Pathania D, Sharma S, Singh P. 2013. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI). Journal of Colloid and Interface Science 401:125−132

doi: 10.1016/j.jcis.2013.03.020
[142]

Chen T, Luo L, Deng S, Shi G, Zhang S, et al. 2018. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology 267:431−437

doi: 10.1016/j.biortech.2018.07.074
[143]

Peng H, Gao P, Chu G, Pan B, Peng J, et al. 2017. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution 229:846−853

doi: 10.1016/j.envpol.2017.07.004
[144]

Qiu B, Tao X, Wang H, Li W, Ding X, et al. 2021. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. Journal of Analytical and Applied Pyrolysis 155:105081

doi: 10.1016/j.jaap.2021.105081
[145]

Barquilha CER, Braga MCB. 2021. Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresource Technology Reports 15:100728

doi: 10.1016/j.biteb.2021.100728
[146]

Zhao Z, Wu Q, Nie T, Zhou W. 2019. Quantitative evaluation of relationships between adsorption and partition of atrazine in biochar-amended soils with biochar characteristics. RSC Advances 9:4162−4171

doi: 10.1039/C8RA08544G
[147]

Xu X, Cao X, Zhao L. 2013. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 92:955−961

doi: 10.1016/j.chemosphere.2013.03.009
[148]

Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL. 2022. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater – Modification, application and mechanism. Chemosphere 291:133035

doi: 10.1016/j.chemosphere.2021.133035
[149]

Du B, Li W, Zhu H, Xu J, Wang Q, et al. 2023. A functional lignin for heavy metal ions adsorption and wound care dressing. International Journal of Biological Macromolecules 239:124268

doi: 10.1016/j.ijbiomac.2023.124268
[150]

Frišták V, Beliančínová K, Polťáková L, Moreno-Jimenéz E, Zimmerman AR, et al. 2024. Engineered Mg-modified biochar-based sorbent for arsenic separation and pre-concentration. Scientific Reports 14:28680

doi: 10.1038/s41598-024-79446-4
[151]

Han R, Gao Y, Jia Y, Wang S . 2024. Heterogeneous precipitation behavior and mechanism during the adsorption of cationic heavy metals by biochar: roles of inorganic components. Journal of Hazardous Materials 480:136322

doi: 10.1016/j.jhazmat.2024.136322
[152]

Xu X, Cao X, Zhao L, Wang H, Yu H, et al. 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research 20:358−368

doi: 10.1007/s11356-012-0873-5
[153]

Lei S, Shi Y, Qiu Y, Che L, Xue C. 2019. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Science of The Total Environment 646:1281−1289

doi: 10.1016/j.scitotenv.2018.07.374
[154]

Cao X, Ma L, Gao B, Harris W. 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology 43:3285−3291

doi: 10.1021/es803092k
[155]

Malhotra M, Puglia M, Kalluri A, Chowdhury D, Kumar CV. 2022. Adsorption of metal ions on graphene sheet for applications in environmental sensing and wastewater treatment. Sensors and Actuators Reports 4:100077

doi: 10.1016/j.snr.2022.100077
[156]

Huang F, Gao LY, Deng JH, Chen SH, Cai KZ. 2018. Quantitative contribution of Cd2+ adsorption mechanisms by chicken-manure-derived biochars. Environmental Science and Pollution Research 25:28322−28334

doi: 10.1007/s11356-018-2889-y
[157]

Zhou Z, Zhang C, Xi M, Ma H, Jia H . 2023. Multi-scale modeling of natural organic matter–heavy metal cations interactions: Aggregation and stabilization mechanisms. Water Research 238:120007

doi: 10.1016/j.watres.2023.120007
[158]

Chang SH. 2022. Micro/nanomotors for metal ion detection and removal from water: A review. Materials Today Sustainability 19:100196

doi: 10.1016/j.mtsust.2022.100196
[159]

Wang F, Jin L, Guo C, Min L, Zhang P, et al. 2021. Enhanced heavy metals sorption by modified biochars derived from pig manure. Science of The Total Environment 786:147595

doi: 10.1016/j.scitotenv.2021.147595
[160]

Zhu H, Chen S, Luo Y. 2023. Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: a short review. Journal of Agriculture and Food Research 12:100552

doi: 10.1016/j.jafr.2023.100552
[161]

Yan Y, Wan B, Mansor M, Wang X, Zhang Q, et al. 2022. Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: a review. Science of The Total Environment 803:149918

doi: 10.1016/j.scitotenv.2021.149918
[162]

Jagaba AH, Lawal IM, Birniwa AH, Affam AC, Usman AK, et al. 2024. Sources of water contamination by heavy metals. In Membrane Technologies for Heavy Metal Removal from Water, ed. Jaafar J, Zaidi AA, Naseer MN. Boca Raton: CRC Press. pp. 3−27 doi: 10.1201/9781003326281

[163]

World Health Organization (WHO). 2021. Lead in drinking-water. Switzerland. www.who.int/publications/i/item/9789240020863

[164]

Xu X, Cao X, Zhao L, Zhou H, Luo Q. 2014. Interaction of organic and inorganic fractions of biochar with Pb(II) ion: Further elucidation of mechanisms for Pb(II) removal by biochar. RSC Advances 4:44930−44937

doi: 10.1039/C4RA07303G
[165]

Zhang X, Zheng H, Wu J, Chen W, Chen Y, et al. 2021. Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: Effects of biomass species and temperature. Biochar 3:657−670

doi: 10.1007/s42773-021-00102-5
[166]

Yan C, Xu Y, Wang L, Liang X, Sun Y, et al. 2020. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead(II) removal of biochar derived from chicken manure. RSC Advances 10:3667−3674

doi: 10.1039/C9RA08199B
[167]

Zhao M, Dai Y, Zhang M, Feng C, Qin B, et al. 2020. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of The Total Environment 717:136894

doi: 10.1016/j.scitotenv.2020.136894
[168]

Alcazar-Ruiz A, Silva LS, Dorado F. 2024. Economic viability assessment of bioenergy production from agroindustrial wastes through fast pyrolysis. Energy 311:133441

doi: 10.1016/j.energy.2024.133441
[169]

Acharya BS, Dodla S, Wang JJ, Pavuluri K, Darapuneni M, et al. 2024. Biochar impacts on soil water dynamics: knowns, unknowns, and research directions. Biochar 6:34

doi: 10.1007/s42773-024-00323-4
[170]

Wang Y, Liu R. 2018. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of The Total Environment 628-629:1139−1148

doi: 10.1016/j.scitotenv.2018.02.137
[171]

Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, et al. 2012. inetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal 197:295−305

doi: 10.1016/j.cej.2012.05.025
[172]

Zhang A, Li X, Xing J, Xu G. 2020. Adsorption of potentially toxic elements in water by modified biochar: a review. Journal of Environmental Chemical Engineering 8:104196

doi: 10.1016/j.jece.2020.104196
[173]

Zhang P, Zhang X, Yuan X, Xie R, Han L. 2021. Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresource Technology 331:125013

doi: 10.1016/j.biortech.2021.125013
[174]

Saravanan A, Kumar PS, Vo DVN, Swetha S, Ngueagni PT, et al. 2021. Ultrasonic assisted agro waste biomass for rapid removal of Cd(II) ions from aquatic environment: mechanism and modelling analysis. Chemosphere 271:129484

doi: 10.1016/j.chemosphere.2020.129484
[175]

Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, et al. 2021. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Science of The Total Environment 772:145355

doi: 10.1016/j.scitotenv.2021.145355
[176]

Idrees M, Batool S, Hussain Q, Ullah H, Al-Wabel MI, et al. 2016. High-efficiency remediation of cadmium (Cd2+) from aqueous solution using poultry manure- and farmyard manure-derived biochars. Separation Science and Technology 51:2307−2317

doi: 10.1080/01496395.2016.1205093
[177]

Pan J, Gao B, Guo K, Gao Y, Xu X, et al. 2022. Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference. Science of The Total Environment 805:150413

doi: 10.1016/j.scitotenv.2021.150413
[178]

Wan S, Wu J, Zhou S, Wang R, Gao B, et al. 2018. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Science of The Total Environment 616−617:1298−1306

doi: 10.1016/j.scitotenv.2017.10.188
[179]

Guan X, Yuan X, Zhao Y, Bai J, Li Y, et al. 2022. Adsorption behaviors and mechanisms of Fe/Mg layered double hydroxide loaded on bentonite on Cd (II) and Pb (II) removal. Journal of Colloid and Interface Science 612:572−583

doi: 10.1016/j.jcis.2021.12.151
[180]

Cheng S, Liu Y, Xing B, Qin X, Zhang C, et al. 2021. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. Journal of Cleaner Production 314:128074

doi: 10.1016/j.jclepro.2021.128074
[181]

Ni BJ, Huang QS, Wang C, Ni TY, Sun J, et al. 2019. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219:351−357

doi: 10.1016/j.chemosphere.2018.12.053
[182]

Mahmoud AED, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA. 2021. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports 11:12547

doi: 10.1038/s41598-021-91093-7
[183]

Mendoza-Castillo DI, Reynel-Ávila HE, Sánchez-Ruiz FJ, Trejo-Valencia R, Jaime-Leal JE, et al. 2018. Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data. Journal of Molecular Liquids 251:15−27

doi: 10.1016/j.molliq.2017.12.030
[184]

El Hanandeh A, Mahdi Z, Imtiaz MS. 2021. Modelling of the adsorption of Pb, Cu and Ni ions from single and multi-component aqueous solutions by date seed derived biochar: Comparison of six machine learning approaches. Environmental Research 192:110338

doi: 10.1016/j.envres.2020.110338
[185]

Jiang B, Lin Y, Mbog JC. 2018. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresource Technology 270:603−611

doi: 10.1016/j.biortech.2018.08.022
[186]

Priyanka, Wood IE, Al-Gailani A, Kolosz BW, Cheah KW, et al. 2024. Cleaning up metal contamination after decades of energy production and manufacturing: reviewing the value in use of biochars for a sustainable future. Sustainability 16:8838

doi: 10.3390/su16208838
[187]

Diao Y, Shan R, Li M, Gu J, Yuan H, et al. 2023. Efficient adsorption of a sulfonamide antibiotic in aqueous solutions with N-doped magnetic biochar: Performance, mechanism, and reusability. ACS Omega 8:879−892

doi: 10.1021/acsomega.2c06234
[188]

Sharma S, Bolan S, Mukherjee S, Petruzzelli G, Pedron F, et al. 2025. Role of organic and biochar amendments on enhanced bioremediation of soils contaminated with persistent organic pollutants (POPs). Current Pollution Reports 11:33

doi: 10.1007/s40726-025-00361-x
[189]

Martín-Lara MA, Blázquez G, Ronda A, Calero M. 2016. Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: Effect of heavy metals incorporated by biosorption. Renewable Energy 96:613−624

doi: 10.1016/j.renene.2016.05.026
[190]

Cai P, Fu J, Zhan M, Jiao W, Chen T, et al. 2022. Formation mechanism and influencing factors of dioxins during incineration of mineralized refuse. Journal of Cleaner Production 342:130762

doi: 10.1016/j.jclepro.2022.130762
[191]

Hu M, Guo K, Zhou H, Zhu W, Deng L, Dai L. 2024. Techno-economic assessment of swine manure biochar production in large-scale piggeries in China. Energy 308:133037

doi: 10.1016/j.energy.2024.133037
[192]

Struhs E, Mirkouei A, You Y, Mohajeri A. 2020. Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA. Applied Energy 279:115782

doi: 10.1016/j.apenergy.2020.115782
[193]

Sahoo K, Upadhyay A, Runge T, Bergman R, Puettmann M, et al. 2021. Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. The International Journal of Life Cycle Assessment 26:189−213

doi: 10.1007/s11367-020-01830-9
[194]

Nematian M, Keske C, Ng'ombe JN. 2021. A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Management 135:467−477

doi: 10.1016/j.wasman.2021.09.014
[195]

Sessions J, Smith D, Trippe KM, Fried JS, Bailey JD, et al. 2019. Can biochar link forest restoration with commercial agriculture? Biomass and Bioenergy 123:175−185

doi: 10.1016/j.biombioe.2019.02.015
[196]

Mukherjee A, Okolie JA, Niu C, Dalai AK. 2022. Techno – economic analysis of activated carbon production from spent coffee grounds: Comparative evaluation of different production routes. Energy Conversion and Management: X 14:100218

doi: 10.1016/j.ecmx.2022.100218
[197]

Varma VS, Parajuli R, Scott E, Canter T, Lim TT, et al. 2021. Dairy and swine manure management – challenges and perspectives for sustainable treatment technology. Science of The Total Environment 778:146319

doi: 10.1016/j.scitotenv.2021.146319
[198]

Whalen JK, Thomas BW, Sharifi M. 2019. Novel practices and smart technologies to maximize the nitrogen fertilizer value of manure for crop production in cold humid temperate regions. In Advances in Agronomy, ed. Sparks DL. vol. 153. Cambridge: Academic Press. pp. 1−85 doi: 10.1016/bs.agron.2018.09.002

[199]

Jin R, Zhao C, Song Y, Qiu X, Li C, Zhao Y. 2023. Competitive adsorption of sulfamethoxazole and bisphenol A on magnetic biochar: Mechanism and site energy distribution. Environmental Pollution 329:121662

doi: 10.1016/j.envpol.2023.121662