[1]

Floyd SK, Lerner VT, Friedman WE. 1999. A developmental and evolutionary analysis of embryology in Platanus (platanaceae), abasal eudicot. American Journal of Botany 86:1523−37

doi: 10.2307/2656790
[2]

Yan X, Shi G, Sun M, Shan S, Chen R, et al. 2024. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proceedings of the National Academy of Sciences of the United States of America 121:e2319679121

doi: 10.1073/pnas.2319679121
[3]

Liu G, Li Z, Bao M. 2007. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145−54

doi: 10.1007/s10681-007-9406-6
[4]

Cariñanos P, Grilo F, Pinho P, Casares-Porcel M, Branquinho C, et al. 2019. Estimation of the allergenic potential of urban trees and urban parks: towards the healthy design of urban green spaces of the future. International Journal of Environmental Research and Public Health 16:1357

doi: 10.3390/ijerph16081357
[5]

Küçük Z, Celenk S. 2025. Microscopic investigation of pollen attachment on different fabric types: implications for forensic and allergy research. Micron 190:103781

doi: 10.1016/j.micron.2024.103781
[6]

Sercombe JK, Green BJ, Rimmer J, Burton PK, Katelaris CH, et al. 2011. London Plane Tree bioaerosol exposure and allergic sensitization in Sydney, Australia. Annals of Allergy, Asthma & Immunology 107:493−500

doi: 10.1016/j.anai.2011.08.011
[7]

Vrinceanu D, Berghi ON, Cergan R, Dumitru M, Ciuluvica RC, et al. 2021. Urban allergy review: allergic rhinitis and asthma with plane tree sensitization (review). Experimental and Therapeutic Medicine 21:275

doi: 10.3892/etm.2021.9706
[8]

Maya-Manzano JM, Fernández-Rodríguez S, Monroy-Colín A, Silva-Palacios I, Tormo-Molina R, et al. 2017. Allergenic pollen of ornamental plane trees in a Mediterranean environment and urban planning as a prevention tool. Urban Forestry & Urban Greening 27:352−62

doi: 10.1016/j.ufug.2017.09.009
[9]

Jiao YX, Song LB, Xu ZQ, Zhu DX, Yang YS, et al. 2022. Purification and characterization of enolase as a novel allergen in Platanus acerifolia pollen. International Immunopharmacology 113:109313

doi: 10.1016/j.intimp.2022.109313
[10]

Song LB, Jiao YX, Xu ZQ, Zhu DX, Yang YS, et al. 2023. Identification of Pla a 7 as a novel pollen allergen group in Platanus acerifolia pollen. International Immunopharmacology 125:111160

doi: 10.1016/j.intimp.2023.111160
[11]

Yang YS, Xu ZQ, Zhu W, Zhu DX, Jiao YX, et al. 2022. Molecular and immunochemical characterization of profilin as major allergen from Platanus acerifolia pollen. International Immunopharmacology 106:108601

doi: 10.1016/j.intimp.2022.108601
[12]

Cariñanos P, Ruiz-Peñuela S, Valle AM, de la Guardia CD. 2020. Assessing pollination disservices of urban street-trees: the case of London-plane tree (Platanus x hispanica Mill. ex Münchh). Science of The Total Environment 737:139722

doi: 10.1016/j.scitotenv.2020.139722
[13]

Lara B, Rojo J, Fernández-González F, Landscape RP-BJ, Planning U. 2019. Prediction of airborne pollen concentrations for the plane tree as a tool for evaluating allergy risk in urban green areas. Landscape and Urban Planning 189:285−95

doi: 10.1016/j.landurbplan.2019.05.002
[14]

Picornell A, Maya-Manzano JM, Fernández-Ramos M, Hidalgo-Barquero JJ, Pecero-Casimiro R, et al. 2024. Effects of climate change on Platanus flowering in Western Mediterranean cities: current trends and future projections. Science of The Total Environment 906:167800

doi: 10.1016/j.scitotenv.2023.167800
[15]

Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243:281−96

doi: 10.1007/s00425-015-2450-x
[16]

Westermann J, Srikant T, Gonzalo A, Tan HS, Bomblies K. 2024. Defective pollen tube tip growth induces neo-polyploid infertility. Science 383:eadh0755

doi: 10.1126/science.adh0755
[17]

Touchell DH, Palmer IE, Ranney TG. 2020. In vitro ploidy manipulation for crop improvement. Frontiers in Plant Science 11:722

doi: 10.3389/fpls.2020.00722
[18]

Zhang Y, Yang Z, He Y, Liu D, Liu Y, et al. 2024. Structural variation reshapes population gene expression and trait variation in 2, 105 Brassica napus accessions. Nature Genetics 56:2538−50

doi: 10.1038/s41588-024-01957-7
[19]

Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6:836−46

doi: 10.1038/nrg1711
[20]

Bomblies K. 2020. When everything changes at once: finding a new normal after genome duplication. Proceedings Biological Sciences 287:20202154

doi: 10.1098/rspb.2020.2154
[21]

Baldwin SJ, Husband BC. 2011. Genome duplication and the evolution of conspecific pollen precedence. Proceedings Biological Sciences 278:2011−17

doi: 10.1098/rspb.2010.2208
[22]

Wu JH, Datson PM, Manako KI, Murray BG. 2014. Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis. Theoretical and Applied Genetics 127:549−57

doi: 10.1007/s00122-013-2238-y
[23]

Liu Y, Hui RK, Deng RN, Wang JJ, Wang M, et al. 2012. Abnormal male meiosis explains pollen sterility in the polyploid medicinal plant Pinellia ternata (Araceae). Genetics and Molecular Research 11:112−20

doi: 10.4238/2012.January.17.1
[24]

Bell AW. 1948. On paraffin embedding. Science 107:166

doi: 10.1126/science.107.2772.166.a
[25]

Echlin P. 1969. Scanning electron microscopy of pollen grains. Review of Allergy 23:135−40

[26]

Aldrich JO, Cunningham JB. 2015. Using IBM SPSS Statistics: An Interactive Hands-On Approach. USA: Sage Publications, Inc. https://dl.acm.org/doi/book/10.5555/2846396

[27]

Chaubal R, Zanella C, Trimnell MR, Fox TW, Albertsen MC, et al. 2000. Two male-sterile mutants of Zea Mays (Poaceae) with an extra cell division in the anther wall. American Journal of Botany 87:1193−201

doi: 10.2307/2656657
[28]

Ku S, Yoon H, Suh HS, Chung YY. 2003. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559−65

doi: 10.1007/s00425-003-1030-7
[29]

Shi S, Ding D, Mei S, Wang J. 2010. A comparative light and electron microscopic analysis of microspore and tapetum development in fertile and cytoplasmic male sterile radish. Protoplasma 241:37−49

doi: 10.1007/s00709-009-0100-5
[30]

Yang Y, Wei F, Braynen J, Wei X, Tian B, et al. 2019. Cytological and proteomic analyses of floral buds reveal an altered atlas of meiosis in autopolyploid Brassica rapa. Cell & Bioscience 9:49

doi: 10.1186/s13578-019-0313-z
[31]

Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytologist 208:306−23

doi: 10.1111/nph.13499
[32]

Chen L, Shahid MQ, Wu J, Chen Z, Wang L, et al. 2018. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice. Molecular Genetics and Genomics 293:1407−20

doi: 10.1007/s00438-018-1471-0
[33]

Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annual Review of Plant Biology 66:297−327

doi: 10.1146/annurev-arplant-050213-035923
[34]

Baskin JM, Baskin CC. 2024. Association of polyploidy with seed mass/germination in angiosperms: a review. Planta 261:21

doi: 10.1007/s00425-024-04586-w
[35]

Lloyd A, Bomblies K. 2016. Meiosis in autopolyploid and allopolyploid Arabidopsis. Current Opinion in Plant Biology 30:116−22

doi: 10.1016/j.pbi.2016.02.004
[36]

Mengist MF, Bostan H, De Paola D, Teresi SJ, Platts AE, et al. 2023. Autopolyploid inheritance and a heterozygous reciprocal translocation shape chromosome genetic behavior in tetraploid blueberry (Vaccinium corymbosum). New Phytologist 237:1024−39

doi: 10.1111/nph.18428
[37]

Vicient CM, Casacuberta JM. 2017. Impact of transposable elements on polyploid plant genomes. Annals of Botany 120:195−207

doi: 10.1093/aob/mcx078
[38]

Ding M, Chen ZJ. 2018. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology 42:37−48

doi: 10.1016/j.pbi.2018.02.003
[39]

Cai F, Shao C, Zhang Y, Shi G, Bao Z, et al. 2021. Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. Plant Science 310:110971

doi: 10.1016/j.plantsci.2021.110971
[40]

Zhang S, Lu S, Yi S, Han H, Zhou Q, et al. 2019. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree. Plant Science 280:206−18

doi: 10.1016/j.plantsci.2018.11.016
[41]

Zhang J, Liu G, Guo C, He Y, Li Z, et al. 2011. The FLOWERING LOCUS T orthologous gene of Platanus acerifolia is expressed as alternatively spliced forms with distinct spatial and temporal patterns. Plant Biology 13:809−20

doi: 10.1111/j.1438-8677.2010.00432.x