[1]

Capstaff NM, Miller AJ. 2018. Improving the yield and nutritional quality of forage crops. Frontiers in Plant Science 9:535

doi: 10.3389/fpls.2018.00535
[2]

Zhang J, Li H, Jiang Y, Li H, Zhang Z, et al. 2020. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology 20:520

doi: 10.1186/s12870-020-02695-8
[3]

Wang K, Liu Y, Tian J, Huang K, Shi T, et al. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science 8:1032

doi: 10.3389/fpls.2017.01032
[4]

Nie G, Zhou J, Jiang Y, He J, Wang Y, et al. 2022. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. BMC Plant Biology 22:68

doi: 10.1186/s12870-021-03412-9
[5]

Chen Y, Sun Y, Wan H, Chen L, Cao L, et al. 2023. Integrative analysis of transcriptome and yeast screening system identified heat stress-responding genes in ryegrass. Environmental and Experimental Botany 210:105333

doi: 10.1016/j.envexpbot.2023.105333
[6]

Xing J, Zhao R, Zhang Q, Huang X, Yin T, et al. 2022. Genome-wide identification and characterization of the LpSAPK family genes in perennial ryegrass highlight LpSAPK9 as an active regulator of drought stress. Frontiers in Plant Science 13:922564

doi: 10.3389/fpls.2022.922564
[7]

Wang ZB, Wang YF, Zhao JJ, Ma L, Wang YJ, et al. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica 56:1081−92

doi: 10.1007/s11099-018-0807-7
[8]

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151:59−66

doi: 10.1016/S0168-9452(99)00197-1
[9]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[10]

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[11]

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, et al. 2015. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research 43:D447−D452

doi: 10.1093/nar/gku1003
[12]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[13]

Xu B, Yu G, Li H, Xie Z, Wen W, et al. 2019. Knockdown of STAYGREEN in perennial ryegrass (Lolium perenne L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality. Plant and Cell Physiology 60:202−12

doi: 10.1093/pcp/pcy203
[14]

Chen Y, Kölliker R, Mascher M, Copetti D, Himmelbach A, et al. 2024. An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). GigaByte 2024:gigabyte112

doi: 10.46471/gigabyte.112
[15]

Shu W. 2006. Characterization of APX, AOBP and AO genes related with ascorbic acid metabolism. Thesis. Huazhong Agricultural University, China

[16]

Nayak M, Patra DK. 2025. Dose-dependent inhibition of photosynthesis and redox alterations in Cymbopogon nardus exposed to cadmium and chromium: evidence through the activity of RUBISCO. International Journal of Phytoremediation 27:1223−38

doi: 10.1080/15226514.2025.2485308
[17]

Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86

doi: 10.1016/j.plaphy.2021.12.013
[18]

Xu F, Wang L, Li Y, Shi J, Staiger D, et al. 2024. Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience. Molecular Plant 17:460−77

doi: 10.1016/j.molp.2024.02.001
[19]

Merret R, Nagarajan VK, Carpentier MC, Park S, Favory JJ, et al. 2015. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Research 43:4121−32

doi: 10.1093/nar/gkv234
[20]

Al-Oudat M, Baydoun SA, Mohammad A. 1998. Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans (Vicia faba) under field conditions. Environmental and Experimental Botany 40:11−16

doi: 10.1016/S0098-8472(98)00014-8
[21]

Wang G, Wang X, Li D, Yang X, Hu T, et al. 2024. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory. BMC Genomics 25:683

doi: 10.1186/s12864-024-10580-z
[22]

Hu S, Ding Y, Zhu C. 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science 11:375

doi: 10.3389/fpls.2020.00375
[23]

Ma G, Liu Z, Song S, Gao J, Liao S, et al. 2024. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). Journal of Integrative Plant Biology 66:2346−61

doi: 10.1111/jipb.13789
[24]

Li H, Xu Y, Lin J, Feng B, Zhu A, et al. 2025. Acetate prevents pistil dysfunction in rice under heat stress by inducing methyl jasmonate and quercetin synthesis. Journal of Advanced Research In Press, Corrected Proof

doi: 10.1016/j.jare.2025.02.015
[25]

Sun X, Han G, Meng Z, Lin L, Sui N. 2019. Roles of malic enzymes in plant development and stress responses. Plant Signaling & Behavior 14:e1644596

doi: 10.1080/15592324.2019.1644596
[26]

Tahjib-Ul-Arif M, Zahan MI, Karim MM, Imran S, Hunter CT, et al. 2021. Citric acid-mediated abiotic stress tolerance in plants. International Journal of Molecular Sciences 22:7235

doi: 10.3390/ijms22137235
[27]

Santiago JP, Soltani A, Bresson MM, Preiser AL, Lowry DB, et al. 2021. Contrasting anther glucose-6-phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment 44:2185−99

doi: 10.1111/pce.14057
[28]

Christine F, Karl K. 2024. The ascorbate-glutathione cycle coming of age. Journal of Experimental Botany 75:2682−99

doi: 10.1093/jxb/erae023
[29]

Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, et al. 2012. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology 80:571−85

doi: 10.1007/s11103-012-9967-1
[30]

Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, et al. 2015. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal 84:56−69

doi: 10.1111/tpj.12958
[31]

Zhang Y, Yu H, Yang X, Li Q, Ling J, et al. 2016. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry 108:478−87

doi: 10.1016/j.plaphy.2016.08.013
[32]

Alshareef NO, Otterbach SL, Allu AD, Woo YH, de Werk T, et al. 2022. NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Scientific Reports 12:11264

doi: 10.1038/s41598-022-14429-x
[33]

Fang Y, Liao K, Du H, Xu Y, Song H, et al. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany 66:6803−17

doi: 10.1093/jxb/erv386
[34]

Guo W, Zhang J, Zhang N, Xin M, Peng H, et al. 2015. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS One 10:e0135667

doi: 10.1371/journal.pone.0135667
[35]

Yang Y, Wu K, Yu D, Han X, Jiang Y. 2025. Inducer of CBF Expression1 (ICE1) interacts with WRKY46 to modulate salicylic acid-induced leaf senescence in Arabidopsis. Plant, Cell & Environment 48:6140−52

doi: 10.1111/pce.15593
[36]

Zhou L, Yu C, Nan S, Li Y, Hu J, et al. 2024. PagSOD2a improves poplar salt tolerance by elevating superoxide dismutase activity and decreasing malondialdehyde contents. Frontiers in Plant Science 15:1456249

doi: 10.3389/fpls.2024.1456249
[37]

Zang D, Li H, Xu H, Zhang W, Zhang Y, et al. 2016. An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Frontiers in Plant Science 7:1272

doi: 10.3389/fpls.2016.01272
[38]

Mittler R, Kim Y, Song L, Coutu J, Coutu A, et al. 2006. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580:6537−42

doi: 10.1016/j.febslet.2006.11.002
[39]

Li Y, Chang Y, Wang Y, Gan C, Li C, et al. 2024. Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening. Plant Physiology 197:kiaf017

doi: 10.1093/plphys/kiaf017
[40]

Meena SK, Quevedo M, Nardeli SM, Verez C, Bhat SS, et al. 2024. Antisense transcription from stress-responsive transcription factors fine-tunes the cold response in Arabidopsis. The Plant Cell 36(9):3467−82

doi: 10.1093/plcell/koae160
[41]

Zhu QY, Zhang LL, Liu JX. 2024. NFXL1 functions as a transcriptional activator required for thermotolerance at reproductive stage in Arabidopsis. Journal of Integrative Plant Biology 66:54−65

doi: 10.1111/jipb.13604