[1]

Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, et al. 2010. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environmental Pollution 158:1986−89

doi: 10.1016/j.envpol.2009.11.023
[2]

Bortolin RC, Caregnato FF, Divan Jr AM, Reginatto FH, Gelain DP, et al. 2014. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum. Ecotoxicology and Environmental Safety 100:114−21

doi: 10.1016/j.ecoenv.2013.09.035
[3]

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, et al. 2021. Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. UK: Cambridge University Press

[4]

Sicard P, Agathokleous E, Anenberg SC, De Marco A, Paoletti E, et al. 2023. Trends in urban air pollution over the last two decades: a global perspective. Science of The Total Environment 858:160064

doi: 10.1016/j.scitotenv.2022.160064
[5]

Nguyen DH, Lin C, Vu CT, Cheruiyot NK, Nguyen MK, et al. 2022. Tropospheric ozone and NOx: a review of worldwide variation and meteorological influences. Environmental Technology & Innovation 28:102809

doi: 10.1016/j.eti.2022.102809
[6]

Wang T, Xue L, Feng Z, Dai J, Zhang Y, et al. 2022. Ground-level ozone pollution in China: a synthesis of recent findings on influencing factors and impacts. Environmental Research Letters 17:063003

doi: 10.1088/1748-9326/ac69fe
[7]

Yang J, Wang Y, Zhang L, Zhao Y. 2025. Investigating the response of China's surface ozone concentration to the future changes of multiple factors. Atmospheric Chemistry and Physics 25:2649−66

doi: 10.5194/acp-25-2649-2025
[8]

Sanz J, Calvete-Sogo H, González-Fernández I, Lin J, García-Gómez H, Muntifering R, et al. 2015. Foliar senescence is the most sensitive response to ozone in Bromus hordeaceus and is modulated by nitrogen input. Grass and Forage Science 70:71−84

doi: 10.1111/gfs.12090
[9]

Zhang K, Xie H, Wen J, Zhang J, Wang ZY, et al. 2024. Leaf senescence in forage and turf grass: progress and prospects. Grass Research 4:e004

doi: 10.48130/grares-0024-0002
[10]

Pleijel H, Broberg MC, Uddling J, Mills G. 2018. Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Science of The Total Environment 613−614:687−92

doi: 10.1016/j.scitotenv.2017.09.111
[11]

Peng J, Shang B, Xu Y, Feng Z, Pleijel H, et al. 2019. Ozone exposure- and flux-yield response relationships for maize. Environmental Pollution 252:1−7

doi: 10.1016/j.envpol.2019.05.088
[12]

Xu S, He X, Chen W, Su D, Huang Y. 2014. Elevated CO2 ameliorated the adverse effect of elevated O3 in previous-year and current-year needles of Pinus tabulaeformis in urban area. Bulletin of Environmental Contamination and Toxicology 92:733−37

doi: 10.1007/s00128-014-1246-1
[13]

Xu S, Li B, Li P, He X, Chen W, et al. 2019. Soil high Cd exacerbates the adverse impact of elevated O3 on Populus alba 'Berolinensis' L. Ecotoxicology and Environmental Safety 174:35−42

doi: 10.1016/j.ecoenv.2019.02.057
[14]

Loka D, Harper J, Humphreys M, Gasior D, Wootton-Beard P, et al. 2019. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses: a review. Food and Energy Security 8:e00152

doi: 10.1002/fes3.152
[15]

Xu S, Li Y, Li B, He X, Chen W, et al. 2022. Responses of growth, oxidative injury and chloroplast ultrastructure in leaves of Lolium perenne and Festuca arundinacea to elevated O3 concentrations. International Journal of Molecular Sciences 23:5153

doi: 10.3390/ijms23095153
[16]

Huang YZ, Sui LH, Wang W, Geng CM, Yin BH. 2012. Visible injury and nitrogen metabolism of rice leaves under ozone stress, and effect on sugar and protein contents in grain. Atmospheric Environment 62:433−40

doi: 10.1016/j.atmosenv.2012.09.002
[17]

Leung F, Pang JYS, Tai APK, Lam T, Tao DKC, et al. 2020. Evidence of ozone-induced visible foliar injury in Hong Kong using Phaseolus vulgaris as a bioindicator. Atmosphere 11:266

doi: 10.3390/atmos11030266
[18]

Fiscus EL, Booker FL, Burkey KO. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell & Environment 28:997−1011

doi: 10.1111/j.1365-3040.2005.01349.x
[19]

Zhang L, Hoshika Y, Carrari E, Burkey KO, Paoletti E. 2018. Protecting the photosynthetic performance of snap bean under free air ozone exposure. Journal of Environmental Sciences 66:31−40

doi: 10.1016/j.jes.2017.05.009
[20]

Brandão SE, Bulbovas P, Lima MEL, Domingos M. 2017. Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors. Science of The Total Environment 575:406−17

doi: 10.1016/j.scitotenv.2016.10.006
[21]

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7:405−10

doi: 10.1016/s1360-1385(02)02312-9
[22]

Wang J, Liu G, Liu F, Zhu J. 2019. Responses of antioxidant enzymes to chronic free-air ozone stress in rice (Oryza sativa L. ) cultivars with different ozone-sensitivities. Bulletin of Environmental Contamination and Toxicology 103:428−34

doi: 10.1007/s00128-019-02653-7
[23]

Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, et al. 2010. Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.). Environmental Pollution 158:2970−76

doi: 10.1016/j.envpol.2010.05.026
[24]

Marchica A, Cotrozzi L, Lorenzini G, Nali C, Pellegrini E. 2022. Antioxidants and phytohormones act in coordination to regulate sage response to long term ozone exposure. Plants 11:904

doi: 10.3390/plants11070904
[25]

Zhang S, Jia Z, Fang T, Liu Y, Zhao W, et al. 2025. Methods to evaluate plant tolerance to environmental stresses. Biodiversity Science 33:24168

doi: 10.17520/biods.2024168
[26]

Tian H, Ding S, Zhang D, Wang J, Hu M, et al. 2024. Sodium bicarbonate tolerance during seedling stages of maize (Zea mays L.) lines. Food and Energy Security 13:70013

doi: 10.1002/fes3.70013
[27]

Zhao T, Pan X, Ou Z, Li Q, Zhang WE. 2022. Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae 296:110890

doi: 10.1016/j.scienta.2022.110890
[28]

Guo C, Zhu L, Sun H, Han Q, Wang S, et al. 2024. Evaluation of drought-tolerant varieties based on root system architecture in cotton (Gossypium hirsutum L.). BMC Plant Biology 24:127

doi: 10.1186/s12870-024-04799-x
[29]

Chen Y, Guo Z, Dong L, Fu Z, Zheng Q, et al. 2021. Turf performance and physiological responses of native Poa species to summer stress in Northeast China. PeerJ 9:e12252

doi: 10.7717/peerj.12252
[30]

Martyniak D, Prokopiuk K, Żurek G, Rybka K. 2022. Measuring fluorescence as a means to evaluate the physiological reaction to growth retardant applied to manage turf. Agronomy 12:1776

doi: 10.3390/agronomy12081776
[31]

Hu L, Zhang P, Jiang Y, Fu J. 2015. Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass (Poa pratensis). Plant Molecular Biology Reporter 33:56−68

doi: 10.1007/s11105-014-0722-4
[32]

Dong W, Ma X, Jiang H, Zhao C, Ma H. 2020. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology 20:362

doi: 10.1186/s12870-020-02559-1
[33]

Bushman BS, Robbins MD, Thorsted K, Robins JG, Warnke SE, et al. 2021. Transcript responses to drought in Kentucky bluegrass (Poa pratensis L.) germplasm varying in their tolerance to drought stress. Environmental and Experimental Botany 190:104571

doi: 10.1016/j.envexpbot.2021.104571
[34]

Wang Y, Cui T, Niu K, Ma H. 2024. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. Journal of Hazardous Materials 474:134727

doi: 10.1016/j.jhazmat.2024.134727
[35]

Minister of Ecology and Environment, People's Republic of China. 2023. Report on the State of the ecology and environment in China 2023. https://english.mee.gov.cn/Resources/Reports/soe/SOEE2019/202408/P020240828593686591369.pdf

[36]

Pride L, Vallad G, Agehara S. 2020. How to measure leaf disease damage using image analysis in ImageJ: HS1382, 9/2020. EDIS 2020:5

doi: 10.32473/edis-hs1382-2020
[37]

Xie Y, Farhadloo M, Guo N, Shekhar S, Watkins E, et al. 2022. NTEP-DB 1.0: a relational database for the national turfgrass evaluation program. International Turfgrass Society Research Journal 14:316−32

doi: 10.1002/its2.76
[38]

Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350−82

doi: 10.1016/0076-6879(87)48036-1
[39]

Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, et al. 2011. Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum 33:877−86

doi: 10.1007/s11738-010-0614-7
[40]

Liu S, Dong Y, Xu L, Kong J. 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation 73:67−78

doi: 10.1007/s10725-013-9868-6
[41]

Díaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García JA, et al. 2008. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany 59:2147−60

doi: 10.1093/jxb/ern082
[42]

Zhang L, Xiao S, Chen YJ, Xu H, Li YG, et al. 2017. Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms. Photosynthetica 55:478−90

doi: 10.1007/s11099-016-0661-4
[43]

Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, et al. 2008. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology 14:46−59

doi: 10.1111/j.1365-2486.2007.01477.x
[44]

Mishra AK, Agrawal SB. 2015. Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797−811

doi: 10.1007/s00709-014-0717-x
[45]

Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, et al. 2008. Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. Journal of Experimental Botany 59:951−63

doi: 10.1093/jxb/ern022
[46]

Zhang L, Xu H, Yang JC, Li WD, Jiang GM, et al. 2010. Photosynthetic characteristics of diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar subjected to elevated ozone exposure. Photosynthetica 48:87−95

doi: 10.1007/s11099-010-0012-9
[47]

Singh E, Tiwari S, Agrawal M. 2009. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. Plant Biology 11:101−8

doi: 10.1111/j.1438-8677.2009.00263.x
[48]

Baniasadi F, Saffari VR, Maghsoudi Moud AA. 2018. Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Scientia Horticulturae 234:312−17

doi: 10.1016/j.scienta.2018.02.069
[49]

Zuo G. 2025. Non-photochemical quenching (NPQ) in photoprotection: insights into NPQ levels required to avoid photoinactivation and photoinhibition. New Phytologist 246:1967−74

doi: 10.1111/nph.70121
[50]

Carrasco-Rodriguez JL, del Valle-Tascon S. 2001. Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environmental and Experimental Botany 45:133−42

doi: 10.1016/s0098-8472(00)00085-x
[51]

Fridovich I. 1999. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Annals of the New York Academy of Sciences 893:13−18

doi: 10.1111/j.1749-6632.1999.tb07814.x
[52]

Bortolin RC, Caregnato FF, Divan AM Jr, Zanotto-Filho A, Moresco KS, et al. 2016. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicology and Environmental Safety 129:16−24

doi: 10.1016/j.ecoenv.2016.03.004