[1]

Wang J, Fu P, Yang S, Shao X, Liu L, et al. 2025. Decomplexation of typical metal-organic complexes and simultaneous recovery of heavy metals: The role of reduction. Journal of Hazardous Materials 494:138636

doi: 10.1016/j.jhazmat.2025.138636
[2]

Xing C, Yao X, Zheng K, Liu Y, Sun Y, et al. 2025. Simultaneous Cr(III)-EDTA decomplexation and Cr(III) sequestration by catalytic ozonation with sulfidated zero-valent iron: Kinetics and removal mechanism. Journal of Hazardous Materials 492:138032

doi: 10.1016/j.jhazmat.2025.138032
[3]

Peng G, Deng S, Liu F, Qi C, Tao L, et al. 2020. Calcined electroplating sludge as a novel bifunctional material for removing Ni(II)-citrate in electroplating wastewater. Journal of Cleaner Production 262:121416

doi: 10.1016/j.jclepro.2020.121416
[4]

Qian JW, Tao Y, Zhang WJ, He XH, Gao P, et al. 2013. Presence of Fe3+ and Zn2+ promoted biotransformation of Cd-citrate complex and removal of metals from solutions. Journal of Hazardous Materials 263:367−373

doi: 10.1016/j.jhazmat.2013.06.021
[5]

Lu Y, Yang F, Chen S, Shi W, Qi C, et al. 2022. Decomplexation of Ni(II)-citrate and recovery of nickel from chelated nickel containing electroplating wastewater by peroxymonosulfate with nickel. Separation and Purification Technology 283:120142

doi: 10.1016/j.seppur.2021.120142
[6]

Rode S, Henninot C, Vallières C, Matlosz M. 2004. Complexation chemistry in copper plating from citrate baths. Journal of The Electrochemical Society 151:C405

doi: 10.1149/1.1715092
[7]

Ma C, Liu M, Yang Z, Zheng Q, Mei J, et al. 2023. Highly efficient Cr (VI) removal from electroplating wastewater by regenerable copper sulfides: Mechanism and magical induction effect for Cr resource recovery. Environmental Research 236:116799

doi: 10.1016/j.envres.2023.116799
[8]

Wang M, Zeng M, Wang P, Liu Y. 2023. Comparative investigation on Ni(II) removal from electroplating wastewater by mineral adsorbent (CSAM) and ion-exchange resins. Separation Science and Technology 58:1959−1971

doi: 10.1080/01496395.2023.2223754
[9]

Zhu Y, Fan W, Feng W, Wang Y, Liu S, et al. 2021. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. Journal of Hazardous Materials 414:125517

doi: 10.1016/j.jhazmat.2021.125517
[10]

Zhang L, Wu B, Zhang G, Gan Y, Zhang S. 2019. Enhanced decomplexation of Cu(II)-EDTA: The role of acetylacetone in Cu-mediated photo-Fenton reactions. Chemical Engineering Journal 358:1218−1226

doi: 10.1016/j.cej.2018.10.124
[11]

Zhang Y, Sun J, Guo Z, Zheng X, Guo P, et al. 2022. The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(II)/Fe(III) redox cycle on Fe-MOF catalyst. Chemical Engineering Journal 430:133025

doi: 10.1016/j.cej.2021.133025
[12]

Sun P, Liu Y, Wang R, Zhu Z, Wu J, et al. 2023. In-situ CO2·/·OH redox induced by degradation intermediate organic acids realized simultaneously Cu-EDTA decomplexation and Cr(VI) reduction in a plasma process. Separation and Purification Technology 315:123705

doi: 10.1016/j.seppur.2023.123705
[13]

Zhu Y, Fan W, Zhou T, Li X. 2019. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of The Total Environment 678:253−266

doi: 10.1016/j.scitotenv.2019.04.416
[14]

Yang J, Kwon T, Baek K, Yang J. 2006. Centrifugal polyelectrolyte enhanced ultrafiltration for removal of copper-citrate complexes from aqueous solutions. Separation Science and Technology 41:1583−1592

doi: 10.1080/01496390600675072
[15]

Izquierdo M, Marzal P, Lens PNL. 2013. Effect of organic ligands on Copper(II) removal from metal plating wastewater by orange peel-based biosorbents. Water Air and Soil Pollution 224:1507

doi: 10.1007/s11270-013-1507-3
[16]

Jia P, Yu MH. 2012. Characteristics and mechanisms of Cu(II) biosorption on sludge in the presence of citrate. Advanced Materials Research 599:598−601

doi: 10.4028/www.scientific.net/amr.599.598
[17]

Zhao J, Hu X, Kong L, Peng X. 2024. Degradation of citrate and reduction of Cu(II) in wastewater containing Cu (II)-citrate complex by UV irradiation. Chemical Engineering Journal 499:156235

doi: 10.1016/j.cej.2024.156235
[18]

Gan R, Wang L, Zeng Z, Han, M, Mei S, et al. 2024. Enhanced decomplexation of Cu(II) complexes and Cu removal by the nFe3O4/persulfate coupled microbial system: Synergistic effect, validation, and mechanism. Separation and Purification Technology 330:125577

doi: 10.1016/j.seppur.2023.125577
[19]

Li M, Wang J, Shen H, He Z, Zhong H, et al. 2023. Removal of benzohydroxamic acid-metal complexes pollution from beneficiation wastewater by metal-biochar/peroxymonosulfate system: Behaviors investigation and mechanism exploration. Chemical Engineering Journal 461:142008

doi: 10.1016/j.cej.2023.142008
[20]

Ling LL, Liu WJ, Zhang S, Jiang H. 2017. Magnesium oxide embedded nitrogen self-doped biochar composites: Fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environmental Science & Technology 51:10081−10089

doi: 10.1021/acs.est.7b02382
[21]

Tan WT, Zhou H, Tang SF, Zeng P, Gu JF, et al. 2022. Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environmental Pollution 300:118899

doi: 10.1016/j.envpol.2022.118899
[22]

Xue R, Zhao Q, Yuan L, Wei L, Jiang J, et al. 2025. Review of Fe/Mn-based chemical stabilizers for remediating arsenic and antimony co-contaminated soil. Journal of Environmental Management 387:125879

doi: 10.1016/j.jenvman.2025.125879
[23]

Zhu Y, Fan W, Feng W, Wang Y, Liu S, et al. 2021. Removal of EDTA-Cu(II) from water using synergistic Fenton reaction-assisted adsorption by nanomanganese oxide-modified biochar: Performance and mechanistic analysis. ACS ES&T Water 1:1302−1312

doi: 10.1021/acsestwater.1c00031
[24]

Yang T, Xu Y, Huang Q, Sun Y, Liang X, et al. 2022. Removal mechanisms of Cd from water and soil using Fe-Mn oxides modified biochar. Environmental Research 212:113406

doi: 10.1016/j.envres.2022.113406
[25]

Qu J, Che N, Niu G, Liu L, Li C, et al. 2023. Iron/manganese binary metal oxide-biochar nano-composites with high adsorption capacities of Cd2+: Preparation and adsorption mechanisms. Journal of Water Process Engineering 51:103332

doi: 10.1016/j.jwpe.2022.103332
[26]

Yang X, Guo Z, Chen X, Xi S, Cui K, et al. 2023. Efficient degradation of thiamethoxam pesticide in water by iron and manganese oxide composite biochar activated persulfate. Chemical Engineering Journal 473:145051

doi: 10.1016/j.cej.2023.145051
[27]

Yang F, Zhang S, Cho DW, Du Q, Song J, et al. 2019. Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. Bioresource Technology 272:415−420

doi: 10.1016/j.biortech.2018.10.068
[28]

Tao Q, Liu J, Zhang H, Khan M, Luo Y, et alY. 2023. Synergistic impacts of ferromanganese oxide biochar and optimized water management on reducing Cd accumulation in rice. Ecotoxicology and Environmental Safety 262:115146

doi: 10.1016/j.ecoenv.2023.115146
[29]

Yang Z, Zeng G, Liu L, He F, Arinzechi C, et al. 2023. Simultaneous immobilization of lead, cadmium and arsenic in soil by iron-manganese modified biochar. Frontiers in Environmental Science 11:1281341

doi: 10.3389/fenvs.2023.1281341
[30]

Tan X, Wei W, Xu C, Meng Y, Bai W, et al. 2020. Manganese-modified biochar for highly efficient sorption of cadmium. Environmental Science and Pollution Research 27:9126−9134

doi: 10.1007/s11356-019-07059-w
[31]

An Q, Jiang YQ, Nan HY, Yu Y, Jiang JN. 2019. Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere 214:846−854

doi: 10.1016/j.chemosphere.2018.10.007
[32]

Joshi TP, Zhang G, Jefferson WA, Perfilev AV, Liu R, et al. 2017. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism. Chemical Engineering Journal 309:577−587

doi: 10.1016/j.cej.2016.10.084
[33]

Mao W, Zhang L, Zhang Y, Guan Y. 2022. Simultaneous removal of arsenite and cadmium by a manganese-crosslinking sodium alginate modified biochar and zerovalent iron composite from aqueous solutions. Environmental Science: Nano 9:214−228

doi: 10.1039/D1EN00722J
[34]

Zhang L, Liu J, Dong Y, Lu Y, Lin H. 2025. Biochar-Fe3O4 nanosheet composite activated by manganous chloride for high-efficient antimony removal: morphology modulation and temperature-dependence. Separation and Purification Technology 365:132250

doi: 10.1016/j.seppur.2025.132250
[35]

Xu S, Wen L, Yu C, Li S, Tang J. 2022. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A Degradation: The coexisting of free-radical and non-radical pathways. Chemical Engineering Journal 442:136250

doi: 10.1016/j.cej.2022.136250
[36]

Jiang J, Zhang S, Li S, Zeng W, Li F, et al. 2022. Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells. Science of the Total Environment 802:149989

doi: 10.1016/j.scitotenv.2021.149989
[37]

Li X, Cheng H. 2023. Mn-modified biochars for efficient adsorption and degradation of cephalexin: Insight into the enhanced redox reactivity. Water Research 243:120368

doi: 10.1016/j.watres.2023.120368
[38]

Zhang L, Tang Y, Zhang Y, Sun W, Yang Z, et al. 2025. Novel Fe-Mn modified self-nitrogen biochar composite: synergistic adsorption-reduction mechanisms for enhanced Cr(VI) removal in aquatic systems. Separation and Purification Technology 374:133703

doi: 10.1016/j.seppur.2025.133703
[39]

Chon K, Kim YM, Bae S. 2024. Advances in Fe-modified lignocellulosic biochar: Impact of iron species and characteristics on wastewater treatment. Bioresource Technology 395:130332

doi: 10.1016/j.biortech.2024.130332
[40]

Qian J, Cai Q, Zheng T, Wu J, Sun F, et al. 2025. Competitive and synergistic effects of biochar modified with phosphoric acid and manganese oxide on the removal of Cd and Congo red from wastewater. Journal of Water Process Engineering 69:106675

doi: 10.1016/j.jwpe.2024.106675
[41]

Shaheen SM, Natasha, Mosa A, El-Naggar A, Faysal Hossain M, et al. 2022. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology 346:126581

doi: 10.1016/j.biortech.2021.126581
[42]

Li Q, Song H, Han R, Wang G, Li A. 2019. Efficient removal of Cu(II) and citrate complexes by combined permanent magnetic resin and its mechanistic insights. Chemical Engineering Journal 366:1−10

doi: 10.1016/j.cej.2019.02.070
[43]

Liang Y, Tao R, Zhao B, Meng Z, Cheng Y, et al. 2024. Roles of iron and manganese in bimetallic biochar composites for efficient persulfate activation and atrazine removal. Biochar 6:41

doi: 10.1007/s42773-024-00331-4
[44]

Zhu Y, Fan W, Zhang K, Xiang H, Wang X. 2020. Nano-manganese oxides-modified biochar for efficient chelated copper citrate removal from water by oxidation-assisted adsorption process. Science of the Total Environment 709:136154

doi: 10.1016/j.scitotenv.2019.136154
[45]

Lu PJ, Hu WW, Chen TS, Chern JM. 2010. Adsorption of copper-citrate complexes on chitosan: Equilibrium modeling. Bioresource Technology 101:1127−1134

doi: 10.1016/j.biortech.2009.09.055
[46]

Jiang X, Rui H, Chen G, Xing B. 2020. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: physicochemical properties, heavy metals sorption behavior and mechanism. Journal of Hazardous Materials 399:123067

doi: 10.1016/j.jhazmat.2020.123067
[47]

Liu Y, Chen Y, Li Y, Chen L, Jiang H, et al. 2024. Immobilization of Pb in waste water and soil by tourmaline-biochar composites (TBs): characteristics and mechanisms. Science of The Total Environment 920:170803

doi: 10.1016/j.scitotenv.2024.170803
[48]

Guo X, Zhang S, Shan XQ. 2008. Adsorption of metal ions on lignin. Journal of Hazardous Materials 151:134−142

doi: 10.1016/j.jhazmat.2007.05.065
[49]

Trieu QA, Hoang KD, Bui TH. 2024. Efficient phosphate adsorption in aqueous solution using nano-zirconia impregnated spent coffee grounds and preliminary application as a slow-release fertilizer. Separation Science and Technology 59(5):773−789

doi: 10.1080/01496395.2024.2343850
[50]

Wang Y, Li J, Xu L, Wu D, Li Q, et al. 2024. EDTA functionalized Mg/Al hydroxides modified biochar for Pb(II) and Cd(II) removal: Adsorption performance and mechanism. Separation and Purification Technology 335:126199

doi: 10.1016/j.seppur.2023.126199
[51]

He L, Shi Y, Chen Y, Shen S, Xue J, et al. 2022. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Separation and Purification Technology 288:120703

doi: 10.1016/j.seppur.2022.120703
[52]

Kong Y, He F, Zhang P, Nie Y, Ma J. 2025. In-situ manganese-aluminum-iron biochar derived from waste flocs for enhanced peroxymonosulfate oxidation: Role of Fe/Mn drives active species based on aluminum adsorption and synergistic promoted electron transfer. Separation and Purification Technology 354:129471

doi: 10.1016/j.seppur.2024.129471
[53]

Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, et al. 2020. Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research 182:109061

doi: 10.1016/j.envres.2019.109061
[54]

Li Y, Feng Y, Li H, Yao Y, Xu C, et al. 2024. Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation. Science of The Total Environment 908:168163

doi: 10.1016/j.scitotenv.2023.168163
[55]

Chen X, Hossain MF, Duan C, Lu J, Tsang YF, et al. 2022. Isotherm models for adsorption of heavy metals from water - A review. Chemosphere 307:135545

doi: 10.1016/j.chemosphere.2022.135545
[56]

Yuan M, Liu D, Liu W, Song Z, Shang S, et al. 2024. Graphene oxide/polydopamine modified montmorillonite/carboxymethyl chitosan composite aerogel for efficient removal of Pb2+, Cu2+, and Cd2+: Adsorption behavior, mechanism and DFT study. Separation and Purification Technology 339:126585

doi: 10.1016/j.seppur.2024.126585
[57]

Pathak HK, Seth CS, Chauhan PK, Dubey G, Singh G, et al. 2024. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development. Environmental Research 255:119136

doi: 10.1016/j.envres.2024.119136
[58]

Sun M, Miao J, Tong X, Zuo M, Song Z, et al. 2024. A new strategy for utilization of gasification ash: Manganese oxides-modified activated carbon for efficient copper citrate removal. Journal of Environmental Management 365:121628

doi: 10.1016/j.jenvman.2024.121628
[59]

Liu B, Pan S, Liu Z, Li X, Zhang X, et al. 2020. Efficient removal of Cu(II) organic complexes by polymer-supported, nanosized, and hydrated Fe(III) oxides through a Fenton-like process. Journal of Hazardous Materials 386:121969

doi: 10.1016/j.jhazmat.2019.121969