[1]

Bauer C, Burkhardt S, Dasgupta NP, Ellingsen LAW, Gaines LL, et al. 2022. Charging sustainable batteries. Nature Sustainability 5:176−178

doi: 10.1038/s41893-022-00864-1
[2]

Fan E, Li L, Wang Z, Lin J, Huang Y, et al. 2020. Sustainable recycling technology for Li-Ion batteries and beyond: challenges and future prospects. Chemical Reviews 120:7020−7063

doi: 10.1021/acs.chemrev.9b00535
[3]

Fan M, Chang X, Guo YJ, Chen WP, Yin YX, et al. 2021. Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy & Environmental Science 14:1461−1468

doi: 10.1039/d0ee03914d
[4]

Fan M, Meng Q, Chang X, Gu CF, Meng XH, et al. 2022. In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator. Advanced Energy Materials 12:2103630

doi: 10.1002/aenm.202103630
[5]

Ji G, Wang J, Liang Z, Jia K, Ma J, et al. 2023. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nature Communications 14:584

doi: 10.1038/s41467-023-36197-6
[6]

Mao J, Ye C, Zhang S, Xie F, Zeng R, et al. 2022. Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy & Environmental Science 15:2732−2752

doi: 10.1039/d2ee00162d
[7]

Zhang R, Hanaoka T. 2021. Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resources, Conservation and Recycling 170:105622

doi: 10.1016/j.resconrec.2021.105622
[8]

Mrozik W, Ali Rajaeifar M, Heidrich O, Christensen P. 2021. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science 14:6099−6121

doi: 10.1039/d1ee00691f
[9]

Raj B, Sahoo MK, Nikoloski A, Singh P, Basu S, et al. 2023. Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies. Batteries & Supercaps 6

doi: 10.1002/batt.202200418
[10]

Xu P, Tan DHS, Jiao B, Gao H, Yu X, et al. 2023. A materials perspective on direct recycling of lithium-ion batteries: principles, challenges and opportunities. Advanced Functional Materials 33:2213168

doi: 10.1002/adfm.202213168
[11]

Yao Q, Xiao F, Lin C, Xiong P, Lai W, et al. 2023. Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes toward ultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries. Battery Energy 2:20220065

doi: 10.1002/bte2.20220065
[12]

Yu J, Ma B, Qiu Z, Wang C, Chen Y. 2023. Separation and recovery of valuable metals from ammonia leaching solution of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 11:9738−9750

doi: 10.1021/acssuschemeng.3c01714
[13]

Liao H, Zhao S, Cai M, Dong Y, Huang F. 2023. Direct conversion of waste battery cathodes to high-volumetric-capacity anodes with assembled secondary-particle morphology. Advanced Energy Materials 13:2300596

doi: 10.1002/aenm.202300596
[14]

Shi Y, Zhang M, Meng YS, Chen Z. 2019. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Advanced Energy Materials 9:1900454

doi: 10.1002/aenm.201900454
[15]

Wang J, Li D, Zeng W, Chen X, Zhang Y, et al. 2025. Degradation mechanism, direct regeneration and upcycling of ternary cathode material for retired lithium-ion power batteries. Journal of Energy Chemistry 102:534−554

doi: 10.1016/j.jechem.2024.11.016
[16]

Wang J, Ma J, Zhuang Z, Liang Z, Jia K, et al. 2024. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chemical Reviews 124:2839−2887

doi: 10.1021/acs.chemrev.3c00884
[17]

Xu P, Yang Z, Yu X, Holoubek J, Gao H, et al. 2021. Design and optimization of the direct recycling of spent li-ion battery cathode materials. ACS Sustainable Chemistry & Engineering 9:4543−4553

doi: 10.1021/acssuschemeng.0c09017
[18]

Zhu XH, Li YJ, Gong MQ, Mo R, Luo SY, et al. 2023. Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method. Angewandte Chemie International Edition 62:e202300074

doi: 10.1002/anie.202300074
[19]

Chen D, Mu S. 2024. Molten salt-assisted synthesis of catalysts for energy conversion. Advanced Materials 36:e2408285

doi: 10.1002/adma.202408285
[20]

Deng B, Zhou Z, Wang W, Wang D. 2020. Direct recovery and efficient reutilization of degraded ternary cathode materials from spent lithium-ion batteries via a homogeneous thermochemical process. ACS Sustainable Chemistry & Engineering 8:14022−14029

doi: 10.1021/acssuschemeng.0c03989
[21]

Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, et al. 2021. Deep eutectic solvents: a review of fundamentals and applications. Chemical Reviews 121:1232−1285

doi: 10.1021/acs.chemrev.0c00385
[22]

Jiang G, Zhang Y, Meng Q, Zhang Y, Dong P, et al. 2020. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chemistry & Engineering 8:18138−18147

doi: 10.1021/acssuschemeng.0c06514
[23]

Liu X, Wang M, Deng L, Cheng YJ, Gao J, et al. 2022. Direct regeneration of spent lithium iron phosphate via a low-temperature molten salt process coupled with a reductive environment. Industrial & Engineering Chemistry Research 61:3831−3839

doi: 10.1021/acs.iecr.1c05034
[24]

Qin Z, Wen Z, Xu Y, Zheng Z, Bai M, et al. 2022. A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode. Small 18:2106719

doi: 10.1002/smll.202106719
[25]

Liu X, Wang R, Liu S, Pu J, Xie H, et al. 2023. Organic eutectic salts-assisted direct lithium regeneration for extremely low state of health Ni-rich cathodes. Advanced Energy Materials 13:2302987

doi: 10.1002/aenm.202302987
[26]

Ma J, Wang J, Jia K, Liang Z, Ji G, et al. 2022. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. Journal of the American Chemical Society 144:20306−20314

doi: 10.1021/jacs.2c07860
[27]

Smith EL, Abbott AP, Ryder KS. 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews 114:11060−11082

doi: 10.1021/cr300162p
[28]

Wang T, Luo H, Bai Y, Li J, Belharouak I, et al. 2020. Direct recycling of spent NCM cathodes through ionothermal lithiation. Advanced Energy Materials 10:2001204

doi: 10.1002/aenm.202001204
[29]

Jeong M, Lee W, Yun S, Choi W, Park H, et al. 2022. Strategic approach to diversify design options for Li-Ion batteries by utilizing low-Ni layered cathode materials. Advanced Energy Materials 12:2103052

doi: 10.1002/aenm.202103052
[30]

Jia K, Yang G, He Y, Cao Z, Gao J, et al. 2024. Degradation mechanisms of electrodes promotes direct regeneration of spent li-ion batteries: a review. Advanced Materials 36:2313273

doi: 10.1002/adma.202313273
[31]

Jung SK, Gwon H, Hong J, Park KY, Seo DH, et al. 2014. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Advanced Energy Materials 4:1300787

doi: 10.1002/aenm.201300787
[32]

Qin Z, Zhang Y, Luo W, Zhang T, Wang T, et al. 2023. A universal molten salt method for direct upcycling of spent Ni-rich cathode towards single-crystalline Li-rich cathode. Angewandte Chemie International Edition 62:e202218672

doi: 10.1002/anie.202218672
[33]

Wang D, Xin C, Zhang M, Bai J, Zheng J, et al. 2019. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chemistry of Materials 31:2731−2740

doi: 10.1021/acs.chemmater.8b04673
[34]

Zhu H, Wang Z, Chen L, Hu Y, Jiang H, et al. 2023. Strain engineering of Ni-rich cathode enables exceptional cyclability in pouch-type full cells. Advanced Materials 35:2209357

doi: 10.1002/adma.202209357
[35]

Hao S, Yang J, Li Y, Liu S, Jiang S, et al. 2025. Utilizing oxygen-vacancy-rich violet tungsten oxide enabling ultralong cycling of nickel-rich cathodes at high voltage. ACS Nano 19:7263−7272

doi: 10.1021/acsnano.4c17374
[36]

Hao S, Lv Y, Zhang Y, Liu S, Tan Z, et al. 2025. Restoration of Li+ pathways in the [010] direction during direct regeneration for spent LiFePO4. Energy & Environmental Science 18:3750−3760

doi: 10.1039/d5ee00641d
[37]

Hao S, Li Y, Yang J, Wang S, Tan Z, et al. 2023. External-to-internal synergistic strategy to enable multi-scale stabilization of LiCoO2 at high-voltage. Journal of Energy Chemistry 76:516−527

doi: 10.1016/j.jechem.2022.09.033