[1]

Li S, Sun K, Latif A, Si Y, Gao Y, et al. 2022. Insights into the applications of extracellular laccase-aided humification in livestock manure composting. Environmental Science & Technology 56:7412−7425

doi: 10.1021/acs.est.1c08042
[2]

Cao Y, Wang X, Bai Z, Chadwick D, Misselbrook T, et al. 2019. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis. Journal of Cleaner Production 235:626−635

doi: 10.1016/j.jclepro.2019.06.288
[3]

Cui H, Ou Y, Wang L, Yan B, Li Y, et al. 2021. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. Journal of Hazardous materials 406:124313

doi: 10.1016/j.jhazmat.2020.124313
[4]

Awasthi MK, Wang M, Chen H, Wang Q, Zhao J, et al. 2017. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource Technology 224:428−438

doi: 10.1016/j.biortech.2016.11.014
[5]

Zhu L, Yang H, Zhao Y, Kang K, Liu Y, et al. 2019. Biochar combined with montmorillonite amendments increase bioavailable organic nitrogen and reduce nitrogen loss during composting. Bioresource Technology 294:122224

doi: 10.1016/j.biortech.2019.122224
[6]

Kumar Awasthi M, Wang M, Pandey A, Chen H, Kumar Awasthi S, et al. 2017. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost. Waste Management 68:760−773

doi: 10.1016/j.wasman.2017.06.008
[7]

Qu J, Zhang L, Zhang X, Gao L, Tian Y. 2020. Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions. Bioresource Technology 314:123781

doi: 10.1016/j.biortech.2020.123781
[8]

Qi H, Wei Z, Zhang J, Zhao Y, Wu J, et al. 2019. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials. Waste Management 87:326−334

doi: 10.1016/j.wasman.2019.02.022
[9]

Zou J, Huang J, Yue D, Zhang H. 2020. Roles of oxygen and Mn (IV) oxide in abiotic formation of humic substances by oxidative polymerization of polyphenol and amino acid. Chemical Engineering Journal 393:124734

doi: 10.1016/j.cej.2020.124734
[10]

Yang Y, Awasthi MK, Bao H, Bie J, Lei S, et al. 2020. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresource Technology 313:123647

doi: 10.1016/j.biortech.2020.123647
[11]

Chen YX, Huang XD, Han ZY, Huang X, Hu B, et al. 2010. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78:1177−1181

doi: 10.1016/j.chemosphere.2009.12.02
[12]

Ma S, Shen Y, Ding J, Cheng H, Zhou H, et al. 2024. Effects of biochar and volcanic rock addition on humification and microbial community during aerobic composting of cow manure. Bioresource Technology 391:129973

doi: 10.1016/j.biortech.2023.129973
[13]

Sanchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, et al. 2018. Role of biochar as an additive in organic waste composting. Bioresource Technology 247:1155−1164

doi: 10.1016/j.biortech.2017.09.193
[14]

Jiang Z, Zheng H, Xing B. 2021. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of the Total Environment 760:143342

doi: 10.1016/j.scitotenv.2020.143342
[15]

Liang J, Yang Z, Tang L, Zeng G, Yu M, et al. 2017. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181:281−288

doi: 10.1016/j.chemosphere.2017.04.081
[16]

Godlewska P, Schmidt HP, Ok YS, Oleszczuk P. 2017. Biochar for composting improvement and contaminants reduction. A review. Bioresource Technology 246:193−202

doi: 10.1016/j.biortech.2017.07.095
[17]

Nguyen MK, Lin C, Hung NTQ, Nguyen HL, Hoang HG, et al. 2025. Biochar and engineering applications in remediation of heavy metal pollutants from wastewater toward sustainable development. In Low Cost Water and Wastewater Treatment Systems: Conventional and Recent Advances, ed. Bui XT, Pandey A, Nguyen TT, Pan SY. Amsterdam: Elsevier. pp. 195-233 doi: 10.1016/b978-0-443-23662-4.00016-0

[18]

Liu S, Kong F, Li Y, Jiang Z, Xi M, et al. 2020. Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil. CATENA 193:104618

doi: 10.1016/j.catena.2020.104618
[19]

Khan MB, Cui X, Jilani G, Tang L, Lu M, et al. 2020. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits. Chemosphere 238:124679

doi: 10.1016/j.chemosphere.2019.12467
[20]

Zhou Y, Zhao H, Lu Z, Ren X, Zhang Z, Wang Q. 2023. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. Bioresource Technology 387:129556

doi: 10.1016/j.biortech.2023.129556
[21]

Li R, Wang Q, Zhang Z, Zhang G, Li Z, et al. 2015. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures. Environmental Technology 36:815−826

doi: 10.1080/09593330.2014.963692
[22]

Tong Z, Liu F, Sun B, Tian Y, Zhang J, et al. 2023. Effect of biochars with different particle sizes on fates of antibiotics and antibiotic resistance genes during composting of swine manure. Bioresource Technology 370:128542

doi: 10.1016/j.biortech.2022.128542
[23]

Mandal S, Donner E, Vasileiadis S, Skinner W, Smith E, et al. 2018. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Science of the Total Environment 627:942−950

doi: 10.1016/j.scitotenv.2018.01.312
[24]

Zhang Z, Liu D, Qiao Y, Li S, Chen Y, et al. 2021. Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis. Science of the Total Environment 783:147103

doi: 10.1016/j.scitotenv.2021.147103
[25]

Zhou S, Kong F, Lu L, Wang P, Jiang Z. 2022. Biochar-An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. Science of the Total Environment 806:151439

doi: 10.1016/j.scitotenv.2021.151439
[26]

Vaccarelli I, Colado R, Pallarés S, Galassi DMP, Sánchez Fernández D, et al. 2023. A global meta-analysis reveals multilevel and context-dependent effects of climate change on subterranean ecosystems. One Earth 6:1510−1522

doi: 10.1016/j.oneear.2023.09.001
[27]

Swart R, Levers C, Davis JTM, Verburg PH. 2023. Meta-analyses reveal the importance of socio-psychological factors for farmers' adoption of sustainable agricultural practices. One Earth 6:1771−1783

doi: 10.1016/j.oneear.2023.10.028
[28]

Bai SH, Omidvar N, Gallart M, Kämper W, Tahmasbian I, et al. 2022. Combined effects of biochar and fertilizer applications on yield: a review and meta-analysis. Science of the Total Environment 808:152073

doi: 10.1016/j.scitotenv.2021.152073
[29]

Huet J, Druilhe C, Trémier A, Benoist JC, Debenest G. 2012. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting. Bioresource Technology 114:428−436

doi: 10.1016/j.biortech.2012.03.031
[30]

Wan J, Wang X, Yang T, Wei Z, Banerjee S, et al. 2021. Livestock manure type affects microbial community composition and assembly during composting. Frontiers in Microbiology 12:621126

doi: 10.3389/fmicb.2021.621126
[31]

Khan N, Clark I, Sánchez-Monedero MA, Shea S, Meier S, et al. 2014. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresource Technology 168:245−251

doi: 10.1016/j.biortech.2014.02.123
[32]

Abdelli LS, Samsam A, Naser SA. 2019. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Scientific Reports 9:8824

doi: 10.1038/s41598-019-45348-z
[33]

Kelley K, Preacher KJ. 2012. On effect size. Psychol Methods 17:137−152

doi: 10.1037/a0028086
[34]

Nguyen TTN, Xu CY, Tahmasbian I, Che R, Xu Z, et al. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 288:79−96

doi: 10.1016/j.geoderma.2016.11.004
[35]

Das S, Chatterjee S, Rajbanshi J. 2022. Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis. Science of the Total Environment 805:150428

doi: 10.1016/j.scitotenv.2021.150428
[36]

Duan Z, Chen C, Ni C, Xiong J, Wang Z, et al. 2023. How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. Journal of Hazardous Materials 448:130939

doi: 10.1016/j.jhazmat.2023.130939
[37]

Yu L, Liu W, Wang X, Ye Z, Tan Q, et al. 2022. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environmental Pollution 306:119356

doi: 10.1016/j.envpol.2022.119356
[38]

Chen D, Liu X, Bian R, Cheng K, Zhang X, et al. 2018. Effects of biochar on availability and plant uptake of heavy metals-A meta-analysis. Journal of Environmental Management 222:76−85

doi: 10.1016/j.jenvman.2018.05.004
[39]

Gurevitch J, Koricheva J, Nakagawa S, Stewart G. 2018. Meta-analysis and the science of research synthesis. Nature 555:175−182

doi: 10.1038/nature25753
[40]

Zhao S, Schmidt S, Qin W, Li J, Li G, et al. 2020. Towards the circular nitrogen economy-A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Science of the Total Environment 704:135401

doi: 10.1016/j.scitotenv.2019.135401
[41]

Yue K, Peng Y, Peng C, Yang W, Peng X, et al. 2016. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports 6:19895

doi: 10.1038/srep19895
[42]

Zhu H, He JL, Wu YM, Tong L, Zhang W, et al. 2024. Assessment of global antibiotic exposure risk for crops: incorporating soil adsorption via machine learning. Environmental Science & Technology 58:13327−13336

doi: 10.1021/acs.est.4c03695
[43]

Yang K, Zhu L, Zhao Y, Wei Z, Chen X, et al. 2019. A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresource Technology 293:122095

doi: 10.1016/j.biortech.2019.122095
[44]

Habes M, Elareshi M, Mansoori A, Pasha S, Salloum SA, et al. 2023. Factors Indicating Media Dependency and Online Misinformation Sharing in Jordan. Sustainability 15:1474

doi: 10.3390/su15021474
[45]

Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, et al. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19−33

doi: 10.1016/j.chemosphere.2013.10.071
[46]

Huang GF, Wong JWC, Wu QT, Nagar BB. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Management 24:805−813

doi: 10.1016/j.wasman.2004.03.011
[47]

Wang L, Li Y, Prasher SO, Yan B, Ou Y, et al. 2019. Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios. Bioresource Technology 289:121745

doi: 10.1016/j.biortech.2019.121745
[48]

Manga M, Evans BE, Ngasala TM, Camargo-Valero MA. 2022. Recycling of faecal sludge: nitrogen, carbon and organic matter transformation during co-composting of faecal sludge with different bulking agents. International Journal of Environmental Research and Public Health 19:10592

doi: 10.3390/ijerph191710592
[49]

Ge M, Shen Y, Ding J, Meng H, Zhou H, et al. 2022. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology 344:126236

doi: 10.1016/j.biortech.2021.126236
[50]

Wang WK, Liang CM. 2021. Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation. Scientific Reports 11:6103

doi: 10.1038/s41598-021-85615-6
[51]

Ji Z, Zhang L, Liu Y, Li X, Li Z. 2023. Evaluation of composting parameters, technologies and maturity indexes for aerobic manure composting: a meta-analysis. Science of The Total Environment 886:163929

doi: 10.1016/j.scitotenv.2023.163929
[52]

Sánchez García M, Alburquerque JA, Sánchez Monedero MA, Roig A, Cayuela ML. 2015. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology 192:272−279

doi: 10.1016/j.biortech.2015.05.003
[53]

He X, Yin H, Sun X, Han L, Huang G. 2018. Effect of different particle-size biochar on methane emissions during pig manure/wheat straw aerobic composting: Insights into pore characterization and microbial mechanisms. Bioresource Technology 268:633−637

doi: 10.1016/j.biortech.2018.08.047
[54]

Zhan Y, Wei Y, Zhang Z, Zhang Ak, Li Y, et al. 2021. Effects of different C/N ratios on the maturity and microbial quantity of composting with sesame meal and rice straw biochar. Biochar 3:557−564

doi: 10.1007/s42773-021-00110-5
[55]

Leng L, Xu S, Liu R, Yu T, Zhuo X, et al. 2020. Nitrogen containing functional groups of biochar: an overview. Bioresource Technology 298:122286

doi: 10.1016/j.biortech.2019.122286
[56]

Wang Y, Hu Y, Zhao X, Wang S, Xing G. 2013. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy & Fuels 27:5890−5899

doi: 10.1021/ef400972z
[57]

Zhang Z, Yang H, Wang B, Chen C, Zou X, et al. 2023. Aerobic co-composting of mature compost with cattle manure: organic matter conversion and microbial community characterization. Bioresource Technology 382:129187

doi: 10.1016/j.biortech.2023.129187
[58]

Li MX, He XS, Tang J, Li X, Zhao R, et al. 2021. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere 264:128549

doi: 10.1016/j.chemosphere.2020.12854
[59]

Zhan Y, Zhang Z, Ma T, Zhang X, Wang R, et al. 2021. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresource Technology 337:125433

doi: 10.1016/j.biortech.2021.125433
[60]

Li D, Su P, Tang M, Zhang G. 2023. Biochar alters the persistence of PAHs in soils by affecting soil physicochemical properties and microbial diversity: a meta-analysis. Ecotoxicology and Environmental Safety 266:115589

doi: 10.1016/j.ecoenv.2023.115589
[61]

Manka'abusi D, Häring V, Steiner C, Heinze S, Abubakari AH, et al. 2025. Biochar effects on carbon and nitrogen dynamics during co-composting of poultry manure with carbonized and uncarbonized organic materials in Sub-Saharan Africa. Journal of Plant Nutrition and Soil Science 188:251−264

doi: 10.1002/jpln.202300254
[62]

Chen P, Shen G, Liang J. 2022. Dissipation and risk assessment of polycyclic aromatic hydrocarbons in industrial-scale biochar composting. Journal of Soils and Sediments 22:1976−1986

doi: 10.1007/s11368-022-03198-9
[63]

Du S, Ding S, Wen X, Yu M, Zou X, et al. 2024. Investigating inhibiting factors affecting seed germination index in kitchen waste compost products: Soluble carbon, nitrogen, and salt insights. Bioresource Technology 406:130995

doi: 10.1016/j.biortech.2024.130995
[64]

Zhou JM. 2017. The Effect of Different C/N Ratios on the Composting of Pig Manure and Edible Fungus Residue with Rice Bran. Compost Science & Utilization 25:120−129

doi: 10.1080/1065657X.2016.1233081
[65]

Cao Y, Wang X, Liu L, Velthof GL, Misselbrook T, et al. 2020. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process. Journal of Environmental Management 264:110454

doi: 10.1016/j.jenvman.2020.110454
[66]

Xu Z, Liang W, Zhang X, Yang X, Zhou S, et al. 2023. Effects of magnesite on nitrogen conversion and bacterial community during pig manure composting. Bioresource Technology 384:129325

doi: 10.1016/j.biortech.2023.129325
[67]

Li Y, Su Y, Hu B, Ma C. 2022. Insight into effects of initial moisture content on the heat-up of sewage sludge composting during mesophilic phase. Nature Environment and Pollution Technology 21:377−383

doi: 10.46488/NEPT.2022.v21i01.045
[68]

Shi M, Zhao Y, Zhu L, Song X, Tang Y, et al. 2020. Denitrification during composting: Biochemistry, implication and perspective. International Biodeterioration & Biodegradation 153:105043

doi: 10.1016/j.ibiod.2020.105043
[69]

He H, Zhen Y, Mi T, Fu L, Yu Z. 2018. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Frontiers in Microbiology 9:116

doi: 10.3389/fmicb.2018.00116
[70]

Cáceres R, Malińska K, Marfà O. 2018. Nitrification within composting: A review. Waste Management 72:119−137

doi: 10.1016/j.wasman.2017.10.049
[71]

Awasthi MK, Wang Q, Ren X, Zhao J, Huang H, et al. 2016. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresource Technology 219:270−280

doi: 10.1016/j.biortech.2016.07.128
[72]

Wang Q, Awasthi MK, Ren X, Zhao J, Li R, et al. 2018. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Management 74:221−230

doi: 10.1016/j.wasman.2018.01.015
[73]

Mao H, Lv Z, Sun H, Li R, Zhai B, et al. 2018. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresource Technology 258:195−202

doi: 10.1016/j.biortech.2018.02.082
[74]

Tran HT, Binh QA, Tung TV, Pham DT, Hoang HG, et al. 2024. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. Environmental Pollution 351:124115

doi: 10.1016/j.envpol.2024.124115
[75]

Sonoki T, Furukawa T, Jindo K, Suto K, Aoyama M, et al. 2013. Influence of biochar addition on methane metabolism during thermophilic phase of composting. Journal of Basic Microbiology 53:617−621

doi: 10.1002/jobm.201200096
[76]

Zhang X, Kong Y, Yang Y, Liu Y, Gao Q, et al. 2025. Using tree-based machine learning models to predict diverse compost maturity via one-hot encoding: Model deployment, experimental validation, and practical application. Waste Management 205:114981

doi: 10.1016/j.wasman.2025.114981
[77]

Sánchez-Monedero MA, Serramiá N, Civantos CG, Fernández-Hernández A, Roig A. 2010. Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere 81:18−25

doi: 10.1016/j.chemosphere.2010.07.022
[78]

He X, Yin H, Han L, Cui R, Fang C, et al. 2019. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism. Bioresource Technology 271:375−382

doi: 10.1016/j.biortech.2018.09.104
[79]

Harter J, Guzman-Bustamante I, Kuehfuss S, Ruser R, Well R, et al. 2016. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports 6:39574

doi: 10.1038/srep39574
[80]

Gong X, Zou L, Wang L, Zhang B, Jiang J. 2023. Biochar improves compost humification, maturity and mitigates nitrogen loss during the vermicomposting of cattle manure-maize straw. Journal of Environmental Management 325:116432

doi: 10.1016/j.jenvman.2022.116432
[81]

Zhang Y, Zhao Y, Chen Y, Lu Q, Li M, et al. 2016. A regulating method for reducing nitrogen loss based on enriched ammonia-oxidizing bacteria during composting. Bioresource Technology 221:276−283

doi: 10.1016/j.biortech.2016.09.057
[82]

Akdeniz N. 2019. A systematic review of biochar use in animal waste composting. Waste Management 88:291−300

doi: 10.1016/j.wasman.2019.03.054