[1]

Wang Q, Luo J, Zhong Z, Borgna A. 2011. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science 4(1):42−55

doi: 10.1039/c0ee00064g
[2]

Wang L, Chen L, Poon CS, Wang CH, Ok YS, et al. 2021. Roles of biochar and CO2 curing in sustainable magnesia cement-based composites. ACS Sustainable Chemistry & Engineering 9(25):8603−8610

doi: 10.1021/acssuschemeng.1c02008
[3]

Xu S, Chen J, Peng H, Leng S, Li H, et al. 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291:120128

doi: 10.1016/j.fuel.2021.120128
[4]

Chen L, Zhang Y, Wang L, Ruan S, Chen J, et al. 2022. Biochar-augmented carbon-negative concrete. Chemical Engineering Journal 431:133946

doi: 10.1016/j.cej.2021.133946
[5]

Munir MT, Ul Saqib N, Li B, Naqvi M. 2023. Food waste hydrochar: an alternate clean fuel for steel industry. Fuel 346:128395

doi: 10.1016/j.fuel.2023.128395
[6]

Wang Q, Xue M, Lin BL, Lei Z, Zhang Z. 2020. Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China. Journal of Cleaner Production 275:123061

doi: 10.1016/j.jclepro.2020.123061
[7]

Afari DB, Coker J, Narku-Tetteh J, Idem R. 2018. Comparative kinetic studies of solid absorber catalyst (K/MgO) and solid desorber catalyst (HZSM-5)-aided CO2 absorption and desorption from aqueous solutions of MEA and blended solutions of BEA-AMP and MEA-MDEA. Industrial & Engineering Chemistry Research 57(46):15824−15839

doi: 10.1021/acs.iecr.8b02931
[8]

Chen L, Zhang Y, Labianca C, Wang L, Ruan S, et al. 2022. Carbon-negative cement-bonded biochar particleboards. Biochar 4(1):58

doi: 10.1007/s42773-022-00185-8
[9]

Zhang Y, Wang S, Feng D, Gao J, Dong L, et al. 2022. Functional biochar synergistic solid/liquid-phase CO2 capture: a review. Energy & Fuels 36(6):2945−2970

doi: 10.1021/acs.energyfuels.1c04372
[10]

Manyà JJ. 2012. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental science & technology 46(15):7939−7954

doi: 10.1021/es301029g
[11]

Li B, Li M, Xie X, Li C, Liu D. 2024. Pyrolysis of rice husk in molten lithium chloride: Biochar structure evolution and CO2 adsorption. Journal of the Energy Institute 113:101526

doi: 10.1016/j.joei.2024.101526
[12]

Lahijani P, Mohammadi M, Mohamed AR. 2018. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. Journal of CO2 utilization 26:281−293

doi: 10.1016/j.jcou.2018.05.018
[13]

Ghanbari S, Kamath G. 2019. Dynamic simulation and mass transfer study of carbon dioxide capture using biochar and MgO-impregnated activated carbon in a swing adsorption process. Energy & fuels 33(6):5452−5463

doi: 10.1021/acs.energyfuels.9b00923
[14]

Zhu Y, Li H, Zhang G, Meng F, Li L, et al. 2018. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresource technology 261:142−150

doi: 10.1016/j.biortech.2018.04.004
[15]

Ding S., Liu Y. 2020. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel 260:116382

doi: 10.1016/j.fuel.2019.116382
[16]

Zhang Y, He M, Wang L, Yan J, Ma B, et al. 2022. Biochar as construction materials for achieving carbon neutrality. Biochar 4(1):59

doi: 10.1007/s42773-022-00182-x
[17]

Asadi Zeidabadi Z, Bakhtiari S, Abbaslou H, Ghanizadeh AR. 2018. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials 181:301−308

doi: 10.1016/j.conbuildmat.2018.05.271
[18]

Gupta S, Kua HW, Low CY. 2018. Use of biochar as carbon sequestering additive in cement mortar. Cement and Concrete Composites 87:110−129

doi: 10.1016/j.cemconcomp.2017.12.009
[19]

Haris Javed M, Ali Sikandar M, Ahmad W, Tariq Bashir M, Alrowais R, et al. 2022. Effect of various biochars on physical, mechanical, and microstructural characteristics of cement pastes and mortars. Journal of Building Engineering 57:104850

doi: 10.1016/j.jobe.2022.104850
[20]

Choi WC, Yun HD, Lee JY. 2012. Mechanical properties of mortar containing bio-char from pyrolysis. Journal of the Korea institute for structural maintenance and inspection 16(3):67−74

doi: 10.11112/jksmi.2012.16.3.067
[21]

Xu F, Wei C, Zeng Q, Li X, Alvarez PJJ, et al. 2017. Aggregation behavior of dissolved black carbon: implications for vertical mass flux and fractionation in aquatic systems. Environmental science & technology 51(23):13723−13732

doi: 10.1021/acs.est.7b04232
[22]

Giannetta B, Plaza C, Galluzzi G, Benavente-Ferraces I, García-Gil JC, et al. 2024. Distribution of soil organic carbon between particulate and mineral-associated fractions as affected by biochar and its co-application with other amendments. Agriculture. Ecosystems & Environment 360:108777

doi: 10.1016/j.agee.2023.108777
[23]

Yue L, Lian F, Han Y, Bao Q, Wang Z, et al. 2019. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of The Total Environment 656:9−18

doi: 10.1016/j.scitotenv.2018.11.364
[24]

Smebye A, Alling V, Vogt RD, Gadmar TC, Mulder J, et al. 2016. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 142:100−105

doi: 10.1016/j.chemosphere.2015.04.087
[25]

Zhang K, Mao J, Chen B. 2019. Reconsideration of heterostructures of biochars: morphology, particle size, elemental composition, reactivity and toxicity. Environmental Pollution 254:113017

doi: 10.1016/j.envpol.2019.113017
[26]

Ye P, Guo B, Qin H, Wang C, Liu Y, et al. 2025. Investigation of the effects of the biochar in different fractions on cement composites. Cement and Concrete Composites 162:106142

doi: 10.1016/j.cemconcomp.2025.106142
[27]

Kim JH, Lee DH, Mendoza JA, Lee MY. 2024. Applying machine learning random forest (RF) method in predicting the cement products with a co-processing of input materials: optimizing the hyperparameters. Environmental Research 248:118300

doi: 10.1016/j.envres.2024.118300
[28]

Shafeeyan MS, Daud WMAW, Houshmand A, Arami-Niya A. 2011. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Applied Surface Science 257(9):3936−3942

doi: 10.1016/j.apsusc.2010.11.127
[29]

Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, et al. 2013. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Industrial Crops and Products 44:18−24

doi: 10.1016/j.indcrop.2012.10.017
[30]

Creamer AE, Gao B, Zhang M. 2014. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal 249:174−179

doi: 10.1016/j.cej.2014.03.105
[31]

GB/T 17671-2021. 2021. Test Method of Cement Mortar Strength, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China

[32]

Cao W, Xu H, Zhang X, Xiang W, Qi G, et al. 2023. Novel post-treatment of ultrasound assisting with acid washing enhance lignin-based biochar for CO2 capture: adsorption performance and mechanism. Chemical Engineering Journal 471:144523

doi: 10.1016/j.cej.2023.144523
[33]

Pińkowska H, Wolak P, Złocińska A. 2012. Hydrothermal decomposition of alkali lignin in sub-and supercritical water. Chemical Engineering Journal 187:410−414

doi: 10.1016/j.cej.2012.01.092
[34]

Pradhan D, Singh RK, Bendu H, Mund R. 2016. Pyrolysis of Mahua seed (Madhuca indica)–production of biofuel and its characterization. Energy Conversion and Management 108:529−538

doi: 10.1016/j.enconman.2015.11.042
[35]

Qian L, Chen B. 2013. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology 47(15):8759−8768

doi: 10.1021/es401756h
[36]

Zhang C, Shao Y, Zhang L, Zhang S, Westerhof RJM, et al. 2020. Impacts of temperature on evolution of char structure during pyrolysis of lignin. Science of the total environment 699:134381

doi: 10.1016/j.scitotenv.2019.134381
[37]

Dissanayake PD, Choi SW, Igalavithana AD, Yang X, Tsang DCW, et al. 2020. Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renewable and Sustainable Energy Reviews 124:109785

doi: 10.1016/j.rser.2020.109785
[38]

Solís RR, del Carmen González M, Blázquez G, Calero M, Martín-Lara MÁ. 2023. Activated char from the co-pyrolysis of polystyrene and olive stone mixtures for the adsorption of CO2. Journal of Environmental Chemical Engineering 11(6):111370

doi: 10.1016/j.jece.2023.111370
[39]

Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P. 2019. Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent. Chemical Engineering Journal 372:526−535

doi: 10.1016/j.cej.2019.04.165
[40]

Choi J, Nam H, Carter S, Capareda SC. 2017. Tuning the physicochemical properties of biochar derived from Ashe juniper by vacuum pressure and temperature. Journal of environmental chemical engineering 5(4):3649−3655

doi: 10.1016/j.jece.2017.07.028
[41]

Wang L, Chen L, Tsang DCW, Guo B, Yang J, et al. 2020. Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production 258:120678

doi: 10.1016/j.jclepro.2020.120678
[42]

Carlson MW, Forbrich LR. 1938. Correlation of methods for measuring heat of hydration of cement. Industrial & Engineering Chemistry Analytical Edition 10(7):382−386

doi: 10.1021/ac50123a012
[43]

Gupta S, Kua HW, Koh HJ. 2018. Application of biochar from food and wood waste as green admixture for cement mortar. Science of the Total Environment 619−620:419−435

doi: 10.1016/j.scitotenv.2017.11.044
[44]

Odimegwu TC, Zakaria I, Abood MM, Nketsiah CBK, Ahmad M. 2018. Review on different beneficial ways of applying alum sludge in a sustainable disposal manner. Civil Engineering Journal 4(9):2230−2241

doi: 10.28991/cej-03091153
[45]

Johannesson B, Utgenannt P. 2001. Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research 31(6):925−931

doi: 10.1016/S0008-8846(01)00498-7
[46]

Chen X, Li J, Xue Q, Huang X, Liu L, et al. 2020. Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics. Construction and Building Materials 262:120723

doi: 10.1016/j.conbuildmat.2020.120723
[47]

Kakali G, Tsivilis S, Aggeli E, Bati M. 2000. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and Concrete Research 30(7):1073−1077

doi: 10.1016/S0008-8846(00)00292-1
[48]

Tan K, Pang X, Qin Y, Wang J. 2020. Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials 263:120616

doi: 10.1016/j.conbuildmat.2020.120616
[49]

Ye P, Guo B, Qin H, Wang C, Li J, et al. 2024. Investigation of the properties and sustainability of modified biochar-doped cement-based composite. Cement and Concrete Composites 153:105684

doi: 10.1016/j.cemconcomp.2024.105684
[50]

Liu P, Zhang M, Mo L, Zhong J, Xu M, et al. 2022. Probe into carbonation mechanism of steel slag via FIB-TEM: The roles of various mineral phases. Cement and Concrete Research 162:106991

doi: 10.1016/j.cemconres.2022.106991