[1]

Srinivasan R, Sorial GA. 2009. Treatment of perchlorate in drinking water: a critical review. Separation and Purification Technology 69:7−21

doi: 10.1016/j.seppur.2009.06.025
[2]

Urbansky ET. 2002. Perchlorate as an environmental contaminant. Environmental Science and Pollution Research 9:187−192

doi: 10.1007/BF02987487
[3]

Aziz CE, Hatzinger PB. 2009. Perchlorate sources, source identification and analytical methods. In In Situ Bioremediation of Perchlorate in Groundwater, ed. Stroo HF, Ward CH. New York, NY: Springer. pp. 55−78 doi: 10.1007/978-0-387-84921-8_4

[4]

Cao F, Jaunat J, Sturchio N, Cancès B, Morvan X, et al. 2019. Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of The Total Environment 661:737−749

doi: 10.1016/j.scitotenv.2019.01.107
[5]

Fang C, Naidu R. 2023. A review of perchlorate contamination: analysis and remediation strategies. Chemosphere 338:139562

doi: 10.1016/j.chemosphere.2023.139562
[6]

Zhang B, An W, Shi Y, Yang M. 2022. Perchlorate occurrence, sub-basin contribution and risk hotspots for drinking water sources in China based on industrial agglomeration method. Environment International 158:106995

doi: 10.1016/j.envint.2021.106995
[7]

Dou D, He M, Liu J, Xiao S, Gao F, et al. 2024. Occurrence, distribution characteristics and exposure assessment of perchlorate in the environment in China. Journal of Hazardous Materials 474:134805

doi: 10.1016/j.jhazmat.2024.134805
[8]

Steinmaus CM. 2016. Perchlorate in water supplies: sources, exposures, and health effects. Current Environmental Health Reports 3:136−143

doi: 10.1007/s40572-016-0087-y
[9]

Wolff J. 1998. Perchlorate and the thyroid gland. Pharmacological Reviews 50:89−105

doi: 10.1016/S0031-6997(24)01350-4
[10]

Leung AM, Pearce EN, Braverman LE. 2010. Perchlorate, iodine and the thyroid. Best Practice & Research Clinical Endocrinology & Metabolism 24:133−141

doi: 10.1016/j.beem.2009.08.009
[11]

Hefter G. 2018. A simple gravimetric method for the determination of perchlorate. Monatshefte für Chemie - Chemical Monthly 149:323−326

doi: 10.1007/s00706-017-2102-x
[12]

Cyganski A, Kowalczyk P. 2000. New cetyltrimethylammoniulu methods for the determination of perchlorates. Chemia Analityczna 45(6):911−919

[13]

Gallego M, Valcárcel M. 1985. Indirect atomic absorption spectrometric determination of perchlorate by liquid-liquid extraction in a flow-injection system. Analytica Chimica Acta 169:161−169

doi: 10.1016/S0003-2670(00)86218-2
[14]

Chattaraj S, De K, Das AK. 1992. Indirect determination of perchlorate by atomic absorption spectrometry. Microchimica Acta 106:183−190

doi: 10.1007/BF01242089
[15]

Hu J, Xian Y, Wu Y, Chen R, Dong H, et al. 2021. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water – a review. Food Chemistry 360:130146

doi: 10.1016/j.foodchem.2021.130146
[16]

Zuliani C, Diamond D. 2012. Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochimica Acta 84:29−34

doi: 10.1016/j.electacta.2012.04.147
[17]

Polidori G, Tonello S, Serpelloni M. 2024. Ion-selective all-solid-state printed sensors: a systematic review. IEEE Sensors Journal 24:7375−7394

doi: 10.1109/JSEN.2024.3354321
[18]

Hixon DC. 1988. A guide to ion-selective electrodes. Nature 335:279−280

doi: 10.1038/335279a0
[19]

Kumar V, Suri R, Mittal S. 2023. Review on new ionophore species for membrane ion selective electrodes. Journal of the Iranian Chemical Society 20:509−540

doi: 10.1007/s13738-022-02708-3
[20]

Gao L, Tian Y, Gao W, Xu G. 2024. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. Sensors 24:4289

doi: 10.3390/s24134289
[21]

Kunz W, Henle J, Ninham BW. 2004. ‘Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts): Franz Hofmeister's historical papers. Current Opinion in Colloid & Interface Science 9:19−37

doi: 10.1016/j.cocis.2004.05.005
[22]

Reznicek J, Bednarik V, Filip J. 2023. Perchlorate sensing—Can electrochemistry meet the sensitivity of standard methods? Electrochimica Acta 445:142027

doi: 10.1016/j.electacta.2023.142027
[23]

Ertürün HEK, Özel AD, Ayanoğlu MN, Şahin Ö, Yılmaz M. 2017. A calix[4]arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes. Ionics 23:917−927

doi: 10.1007/s11581-016-1906-8
[24]

Memon AA, Solangi AR, Memon S, Ali Bhatti A, Ali Bhatti A. 2015. Highly selective determination of perchlorate by a calix[4]arene based polymeric membrane electrode. Polycyclic Aromatic Compounds 36:106−119

doi: 10.1080/10406638.2014.948121
[25]

Ertürün HEK. 2017. Fabrication of a new carbon paste electrode based on 5,11,17,23-tetra-tert-butyl-25,27-bis(pyren-1-yl-methylimido-propoxy)-26,28-dihydroxy-calix[4]arene for potentiometric perchlorate determination. International Journal of Electrochemical Science 12:10737−10748

doi: 10.20964/2017.11.21
[26]

Canel E, Erden S, Özel AD, Memon S, Yilmaz M, et al. 2008. A hydrogen ion-selective poly(vinyl chloride) membrane electrode based on calix[4]arene as a perchlorate ion-selective electrode. Turkish Journal of Chemistry 32:323−332

[27]

Ganjali MR, Yousefi M, Poursaberi T, Naji L, Salavati-Niasari M, et al. 2003. Highly selective and sensitive perchlorate sensors based on some recently synthesized Ni(II)-hexaazacyclotetradecane complexes. Electroanalysis 15:1476−1480

doi: 10.1002/elan.200302679
[28]

Ganjali MR, Norouzi P, Faridbod F, Yousefi M, Naji L, Salavati-Niasari M. 2007. Perchlorate-selective membrane sensors based on two nickel-hexaazamacrocycle complexes. Sensors and Actuators B: Chemical 120:494−499

doi: 10.1016/j.snb.2006.03.002
[29]

Rezaei B, Meghdadi S, Nafisi V. 2007. Fast response and selective perchlorate polymeric membrane electrode based on bis(dibenzoylmethanato) nickel(II) complex as a neutral carrier. Sensors and Actuators B: Chemical 121:600−605

doi: 10.1016/j.snb.2006.04.093
[30]

Soleymanpour A, Hamidi Asl E, Nabavizadeh SM. 2007. Perchlorate selective membrane electrodes based on synthesized platinum(II) complexes for low-level concentration measurements. Sensors and Actuators B: Chemical 120:447−454

doi: 10.1016/j.snb.2006.02.036
[31]

Soleymanpour A, Garaili B, Nabavizadeh SM. 2008. Perchlorate selective membrane electrodes based on a platinum complex. Monatshefte Für Chemie - Chemical Monthly 139:1439−1445

doi: 10.1007/s00706-008-0947-8
[32]

Rezaei B, Meghdadi S, Bagherpour S. 2009. Perchlorate-selective polymeric membrane electrode based on bis(dibenzoylmethanato) cobalt(II) complex as a neutral carrier. Journal of Hazardous Materials 161:641−648

doi: 10.1016/j.jhazmat.2008.04.005
[33]

Chandra S, Malik A, Tomar PK, Kumar A, Sadwal S. 2011. Perchlorate selective PVC membrane electrode based on Cobalt(II) complex of p-hydroxy acetophenone semicarbazone. Analytical and Bioanalytical Electrochemistry 3:379−392

[34]

Gholamian F, Ali Sheikh-Mohseni M, Salavati-Niasari M. 2011. Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering: C 31:1688−1691

doi: 10.1016/j.msec.2011.07.017
[35]

Onder A, Topcu C, Coldur F. 2018. Construction of a novel highly selective potentiometric perchlorate sensor based on neocuproine–Cu(II) complex formed in situ during the conditioning period. Chemija 29(1):57−66

doi: 10.6001/chemija.v29i1.3644
[36]

Gupta VK, Singh AK, Singh P, Upadhyay A. 2014. Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands. Sensors and Actuators B: Chemical 199:201−209

doi: 10.1016/j.snb.2014.03.078
[37]

Sánchez-Pedreño C, Ortuño JA, Hernández J. 2000. Perchlorate-selective polymeric membrane electrode based on a gold(I) complex: application to water and urine analysis. Analytica Chimica Acta 415:159−164

doi: 10.1016/S0003-2670(00)00872-2
[38]

Hassan SSM, Galal Eldin A, Amr AEGE, Al-Omar MA, Kamel AH. 2019. Single-Walled Carbon Nanotubes (SWCNTs) as solid-contact in all-solid-state perchlorate ISEs: applications to fireworks and propellants analysis. Sensors 19:2697

doi: 10.3390/s19122697
[39]

Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Hasaninejad AR. 2003. Perchlorate selective membrane electrodes based on a phosphorus(V)–tetraphenylporphyrin complex. Sensors and Actuators B: Chemical 89:9−14

doi: 10.1016/S0925-4005(02)00401-X
[40]

Casabó J, Escriche L, Pérez-Jiménez C, Muñoz JA, Teixidor F, et al. 1996. Application of a new phosphadithiamacrocycle to ClO4-selective CHEMFET and ion-selective electrode devices. Analytica Chimica Acta 320:63−68

doi: 10.1016/0003-2670(95)00526-9
[41]

Jain AK, Raisoni J, Kumar R, Jain S. 2007. Perchlorate selective sensor based on a newly synthesized hydrogen-bonding diamide receptor. International Journal of Environmental Analytical Chemistry 87:553−563

doi: 10.1080/03067310701272905
[42]

Itterheimová P, Bobacka J, Šindelář V, Lubal P. 2022. Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. Chemosensors 10

doi: 10.3390/chemosensors10030115
[43]

Gil R, Amorim CG, Crombie L, Kong Thoo Lin P, Araújo A, et al. 2015. Study of a novel bisnaphthalimidopropyl polyamine as electroactive material for perchlorate-selective potentiometric sensors. Electroanalysis 27:2809−2819

doi: 10.1002/elan.201500275
[44]

Errachid A, Pérez-Jiménez C, Casabó J, Escriche L, Munoz JA, et al. 1997. Perchlorate-selective MEMFETs and ISEs based on a new phosphadithiamacrocycle. Sensors and Actuators B: Chemical 43:206−210

doi: 10.1016/S0925-4005(97)00158-5
[45]

Joon NK, Barnsley JE, Ding R, Lee S, Latonen RM, et al. 2020. Silver(I)-selective electrodes based on rare earth element double-decker porphyrins. Sensors and Actuators B: Chemical 305:127311

doi: 10.1016/j.snb.2019.127311
[46]

Bakker E, Pretsch E, Bühlmann P. 2000. Selectivity of potentiometric ion sensors. Analytical Chemistry 72:1127−1133

doi: 10.1021/ac991146n
[47]

Maccà C. 2004. Response time of ion-selective electrodes: Current usage versus IUPAC recommendations. Analytica Chimica Acta 512:183−190

doi: 10.1016/j.aca.2004.03.010
[48]

Ivanova NM, Levin MB, Mikhelson KN. 2012. Problems and prospects of solid contact ion-selective electrodes with ionophore-based membranes. Russian Chemical Bulletin 61:926−936

doi: 10.1007/s11172-012-0136-0
[49]

Chaniotakis NA, Park SB, Meyerhoff ME. 1989. Salicylate-selective membrane electrode based on tin(IV)-tetraphenylporphyrin. Analytical Chemistry 61:566−570

doi: 10.1021/ac00181a013
[50]

Cotton FA. 1999. Advanced inorganic chemistry. New York, Chichester: Wiley. 1355 pp.

[51]

Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, et al. 2022. Understanding specific ion effects and the Hofmeister series. Physical Chemistry Chemical Physics 24:12682−12718

doi: 10.1039/D2CP00847E
[52]

Grygolowicz-Pawlak E, Crespo GA, Ghahraman Afshar M, Mistlberger G, Bakker E. 2013. Potentiometric sensors with ion-exchange Donnan exclusion membranes. Analytical Chemistry 85:6208−6212

doi: 10.1021/ac400470n
[53]

Salvo-Comino C, Alonso-Pastor LE, Pérez-González C, Pettinelli S, Núñez Carrero KC, et al. 2025. Impact of molecular structure and plasticization of PVC membranes in the response of solid-state ion-selective electrodes. Sensors and Actuators Reports 9:100301

doi: 10.1016/j.snr.2025.100301
[54]

Mahmoud H, Othmen K, Ncib S, Alyani I, Dammak L, et al. 2024. Effect of Plasticizer Type on Polymer Inclusion Membranes Properties and Performance for Zinc Separation. ChemistrySelect 9:e202303956

doi: 10.1002/slct.202303956
[55]

Morawska K, Wardak C. 2024. Application of ionic liquids in ion-selective electrodes and reference electrodes: a review. ChemPhysChem 25:e202300818

doi: 10.1002/cphc.202300818
[56]

Mazloum Ardakani M, Jalayer M, Naeimi H, Zare HR, Moradi L. 2005. Perchlorate-selective membrane electrode based on a new complex of uranil. Analytical and Bioanalytical Chemistry 381:1186−1192

doi: 10.1007/s00216-004-3011-5
[57]

Kozlowski C, Zawierucha I. 2025. Polymer Inclusion Membranes Based on Sulfonic Acid Derivatives as Ion Carriers for Selective Separation of Pb(II) Ions. Membranes 15:146

doi: 10.3390/membranes15050146
[58]

Ocampo AL, Aguilar JC, Rodríguez de San Miguel E, Monroy M, Roquero P, et al. 2009. Novel proton-conducting polymer inclusion membranes. Journal of Membrane Science 326:382−387

doi: 10.1016/j.memsci.2008.10.010