[1]

Bocanegra Morales N, Galeano Garcia P. 2023. Chemical composition, fatty acid profile, and optimization of the sacha inchi (Plukenetia volubilis L.) seed-roasting process using response surface methodology: assessment of oxidative stability and antioxidant activity. Foods 12:3405

doi: 10.3390/foods12183405
[2]

Istiandari P, Faizal A. 2025. Integrating in vitro cultivation and sustainable field practices of sacha inchi (Plukenetia volubilis L.) for enhanced oil yield and quality: a review. Horticulturae 11:194

doi: 10.3390/horticulturae11020194
[3]

Kittibunchakul S, Hudthagosol C, Sanporkha P, Sapwarobol S, Temviriyanukul P, et al. 2022. Evaluation of sacha inchi (Plukenetia volubilis L.) by-products as valuable and sustainable sources of health benefits. Horticulturae 8:344

doi: 10.3390/horticulturae8040344
[4]

Kodahl N, Sørensen M. 2021. Sacha inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy 11:1066

doi: 10.3390/agronomy11061066
[5]

Goyal A, Tanwar B, Kumar Sihag M, Sharma V. 2022. Sacha inchi (Plukenetia volubilis L.): an emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry 373:131459

doi: 10.1016/j.foodchem.2021.131459
[6]

Niu L, Li J, Chen MS, Xu ZF. 2014. Determination of oil contents in Sacha inchi (Plukenetia volubilis) seeds at different developmental stages by two methods: Soxhlet extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products 56:187−90

doi: 10.1016/j.indcrop.2014.03.007
[7]

Cordero-Clavijo LM, Mejía-Valdez D, Antunes-Ricardo M, Lazo-Vélez MA, Guajardo-Flores D. 2025. Evaluating sacha inchi (Plukenetia volubilis) oil stability and physicochemical properties: a comparison between conventional extraction and supercritical fluids. Food Chemistry 463:141132

doi: 10.1016/j.foodchem.2024.141132
[8]

Hu C, Xu X, Hu X, Zhang J, Shen L. 2025. Edible plant oils with high n-3/n-6 polyunsaturated fatty acids ratio prolong the lifespan of Drosophila by modulating lipid metabolism. Food Chemistry 474:143121

doi: 10.1016/j.foodchem.2025.143121
[9]

Bhatt DL, Libby P, Mason RP. 2025. Emerging pathways of action of eicosapentaenoic acid (EPA). JACC Basic to Translational Science 10:396−400

doi: 10.1016/j.jacbts.2024.10.010
[10]

Yang W, Jia Y, Yang Y, Chen H, Zhou L, et al. 2025. Sacha inchi oil addition to hen diets and the effects on egg yolk flavor based on multiomics and flavoromics analysis. Food Chemistry 475:143251

doi: 10.1016/j.foodchem.2025.143251
[11]

Gishini MFS, Kachroo P, Hildebrand D. 2025. Fatty acid desaturase 3-mediated α-linolenic acid biosynthesis in plants. Plant Physiology 197:kiaf012

doi: 10.1093/plphys/kiaf012
[12]

Hoffmann M, Hornung E, Busch S, Kassner N, Ternes P, et al. 2007. A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. Journal of Biological Chemistry 282:26666−74

doi: 10.1074/jbc.M705068200
[13]

Hernández ML, Jiménez-López J, Cejudo FJ, Pérez-Ruiz JM. 2024. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. Plant Physiology 195:1521−35

doi: 10.1093/plphys/kiae102
[14]

Wu D, Zhang K, Li CY, Xie GW, Lu MT, et al. 2023. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 889:147808

doi: 10.1016/j.gene.2023.147808
[15]

Li X, Munir M, Zeng W, Sun Z, Chang X, et al. 2025. Characterization of fatty acid desaturase gene family in Glycine max and their expression patterns in seeds after Fusarium fujikuroi infection. Frontiers in Plant Science 16:1540003

doi: 10.3389/fpls.2025.1540003
[16]

Fan K, Qin Y, Hu X, Xu J, Ye Q, et al. 2023. Identification of genes associated with fatty acid biosynthesis based on 214 safflower core germplasm. BMC Genomics 24:763

doi: 10.1186/s12864-023-09874-5
[17]

Wu P, Zhang S, Zhang L, Chen Y, Li M, et al. 2013. Functional characterization of two microsomal fatty acid desaturases from Jatropha curcas L. Journal of Plant Physiology 170:1360−66

doi: 10.1016/j.jplph.2013.04.019
[18]

Chellamuthu M, Kumaresan K, Subramanian S. 2022. Increase in alpha-linolenic acid content by simultaneous expression of fatty acid metabolism genes in Sesame (Sesamum indicum L.). Physiology and Molecular Biology of Plants 28:559−72

doi: 10.1007/s12298-022-01152-0
[19]

Liu G, Wu Z, Shang X, Peng Y, Gao L. 2022. Overexpression of PvFAD3 gene from Plukenetia volubilis promotes the biosynthesis of α-linolenic acid in transgenic tobacco seeds. Genes 13:450

doi: 10.3390/genes13030450
[20]

Fu Y, Huo K, Pei X, Liang C, Meng X, et al. 2022. Full-length transcriptome revealed the accumulation of polyunsaturated fatty acids in developing seeds of Plukenetia volubilis. PeerJ 10:e13998

doi: 10.7717/peerj.13998
[21]

Delgado C. 2025. NICE approves gene editing therapy for patients with severe sickle cell disease. BMJ 388:r210

doi: 10.1136/bmj.r210
[22]

Deng X, Chen L, Hei M, Liu T, Feng Y, et al. 2020. Structure-guided reshaping of the acyl binding pocket of ‘TesA thioesterase enhances octanoic acid production in E. coli. Metabolic Engineering 61:24−32

doi: 10.1016/j.ymben.2020.04.010
[23]

Zhou L, Tao C, Shen X, Sun X, Wang J, et al. 2024. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnology Advances 73:108376

doi: 10.1016/j.biotechadv.2024.108376
[24]

Zhang C, Feng Y, Zhu Y, Gong L, Wei H, et al. 2024. NAC4ED: A high-throughput computational platform for the rational design of enzyme activity and substrate selectivity. mLife 3:505−14

doi: 10.1002/mlf2.12154
[25]

Wang M, Chen H, Gu Z, Zhang H, Chen W, et al. 2013. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use. Applied Microbiology and Biotechnology 97:10255−62

doi: 10.1007/s00253-013-5336-5
[26]

Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, et al. 2015. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524:252−56

doi: 10.1038/nature14549
[27]

Wang H, Klein MG, Zou H, Lane W, Snell G, et al. 2015. Crystal structure of human stearoyl–coenzyme A desaturase in complex with substrate. Nature Structural & Molecular Biology 22:581−85

doi: 10.1038/nsmb.3049
[28]

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139:5−17

doi: 10.1104/pp.105.063743
[29]

Nayda NC, Thomas JM, Delaney CL, Miller MD. 2023. The effect of omega-3 polyunsaturated fatty acid intake on blood levels of omega-3s in people with chronic atherosclerotic disease: a systematic review. Nutrition Reviews 81:1447−61

doi: 10.1093/nutrit/nuad020
[30]

Kim Y, Park Y. 2023. Intake of omega-3 polyunsaturated fatty acids and fish associated with prevalence of low lean mass and muscle mass among older women: analysis of Korea National Health and Nutrition Examination Survey, 2008−2011. Frontiers in Nutrition 10:1119719

doi: 10.3389/fnut.2023.1119719
[31]

Islam A, Takeyama E, Al Mamun M, Sato T, Horikawa M, et al. 2020. Green nut oil or DHA supplementation restored decreased distribution levels of DHA containing phosphatidylcholines in the brain of a mouse model of dementia. Metabolites 10:153

doi: 10.3390/metabo10040153
[32]

Su BM, Xu XQ, Yan RX, Xie Y, Lin J. 2019. Mutagenesis on the surface of a β-agarase from Vibrio sp. ZC-1 increased its thermo-stability. Enzyme and Microbial Technology 127:22−31

doi: 10.1016/j.enzmictec.2019.04.006
[33]

Sun W, Chen X, Bi P, Han J, Li S, et al. 2024. Screening and characterization of indigenous non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production. Food Chemistry 440:138309

doi: 10.1016/j.foodchem.2023.138309
[34]

Sun R, Gao L, Yu X, Zheng Y, Li D, et al. 2016. Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae. Gene 591:21−26

doi: 10.1016/j.gene.2016.06.039
[35]

Tanomman S, Ketudat-Cairns M, Jangprai A, Boonanuntanasarn S. 2013. Characterization of fatty acid delta-6 desaturase gene in Nile tilapia and heterogenous expression in Saccharomyces cerevisiae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 166:148−56

doi: 10.1016/j.cbpb.2013.07.011
[36]

He X, Shang J, Li F, Liu H. 2015. Yeast cell surface display of linoleic acid isomerase from Propionibacterium acnes and its application for the production of trans-10, cis-12 conjugated linoleic acid. Biotechnology and Applied Biochemistry 62:1−8

doi: 10.1002/bab.1249
[37]

Chen L, Wang L, Wang H, Sun R, You L, et al. 2018. Identification and characterization of a plastidial ω-3 fatty acid desaturase EgFAD8 from oil palm (Elaeis guineensis Jacq.) and its promoter response to light and low temperature. PLoS One 13:e0196693

doi: 10.1371/journal.pone.0196693
[38]

Williams JP, Khan MU, Mitchell K, Johnson G. 1988. The effect of temperature on the level and biosynthesis of unsaturated fatty acids in diacylglycerols of Brassica napus leaves. Plant Physiology 87:904−10

doi: 10.1104/pp.87.4.904
[39]

Nwafor CC, Li D, Qin P, Li L, Zhang W, et al. 2022. Genetic and biochemical investigation of seed fatty acid accumulation in Arabidopsis. Frontiers in Plant Science 13:942054

doi: 10.3389/fpls.2022.942054
[40]

Yılmaz C, Ecem Berk Ş, Gökmen V. 2024. Effect of different stress conditions on the formation of amino acid derivatives by Brewer’s and Baker’s yeast during fermentation. Food Chemistry 435:137513

doi: 10.1016/j.foodchem.2023.137513