[1]

Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. 2022. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 12:183

doi: 10.1007/s13205-022-03242-y
[2]

Lal MK, Sharma N, Adavi SB, Sharma E, Altaf MA, et al. 2022. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO2]. Plant Molecular Biology 110:305−24

doi: 10.1007/s11103-022-01274-9
[3]

Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, et al. 2003. Changes in anthocyanin concentration and composition in 'Jaguar' rose flowers due to transient high-temperature conditions. Plant Science 164:333−40

doi: 10.1016/S0168-9452(02)00417-X
[4]

Wang K, Shen Y, Wang H, He S, Kim W, et al. 2022. Effects of exogenous salicylic acid (SA), 6-benzylaminopurine (6-BA), or abscisic acid (ABA) on the physiology of Rosa hybrida 'Carolla' under high-temperature stress. Horticulturae 8:851

doi: 10.3390/horticulturae8090851
[5]

Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. 2014. Trehalose metabolism in plants. The Plant Journal 79:544−67

doi: 10.1111/tpj.12509
[6]

Acosta-Pérez P, Camacho-Zamora BD, Espinoza-Sánchez EA, Gutiérrez-Soto G, Zavala-García F, et al. 2020. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. Plants 9:315

doi: 10.3390/plants9030315
[7]

Yatsyshyn VY, Kvasko AY, Yemets AI. 2017. Genetic approaches in research on the role of trehalose in plants. Cytology and Genetics 51:371−83

doi: 10.3103/S0095452717050127
[8]

Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, et al. 2012. Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis. Plant Physiology 160:884−96

doi: 10.1104/pp.112.201400
[9]

Ma C, Wang Z, Kong B, Lin T. 2013. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regulation 70:275−85

doi: 10.1007/s10725-013-9799-2
[10]

Zhao DQ, Li TT, Hao ZJ, Cheng ML, Tao J. 2019. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress and Chaperones 24:247−57

doi: 10.1007/s12192-018-00961-1
[11]

Lei M, Wu X, Huang C, Qiu Z, Wang L, et al. 2019. Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Applied Microbiology and Biotechnology 103:5379−90

doi: 10.1007/s00253-019-09834-8
[12]

Li C, Lu X, Liu Y, Xu J, Yu W. 2023. Trehalose alleviates the inhibition of adventitious root formation caused by drought stress in cucumber through regulating ROS metabolism and activating trehalose and plant hormone biosynthesis. Plant Physiology and Biochemistry 205:108159

doi: 10.1016/j.plaphy.2023.108159
[13]

Fichtner F, Lunn JE. 2021. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology 72:737−60

doi: 10.1146/annurev-arplant-050718-095929
[14]

Hwang G, Kim S, Cho JY, Paik I, Kim JI, et al. 2019. Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana. EMBO Reports 20:e47828

doi: 10.15252/embr.201947828
[15]

Lunn JE. 2007. Gene families and evolution of trehalose metabolism in plants. Functional Plant Biology 34:550−63

doi: 10.1071/FP06315
[16]

Fu Y, Zhang Z, Liu J, Chen M, Pan R, et al. 2020. Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. Journal of Plant Growth Regulation 39:669−79

doi: 10.1007/s00344-019-10009-y
[17]

Xu Y, Wang Y, Mattson N, Yang L, Jin Q. 2017. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress. BMC Genomics 18:926

doi: 10.1186/s12864-017-4298-x
[18]

Dan Y, Niu Y, Wang C, Yan M, Liao W. 2021. Genome-wide identification and expression analysis of the trehalose-6-phosphate synthase (TPS) gene family in cucumber (Cucumis sativus L.). PeerJ 9:e11398

doi: 10.7717/peerj.11398
[19]

Liu W, Zhang HH, Long ZX, Chi XN, Wang YP. 2024. Identification, evolutionary relationship analysis of the trehalose-6-phosphate synthase (TPS) gene family in common bean (Phaseolus vulgaris) and their expression in response to cold stress. Journal of Plant Growth Regulation 43:323−40

doi: 10.1007/s00344-023-11087-9
[20]

Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F. 2010. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Molecular Plant 3:406−19

doi: 10.1093/mp/ssp114
[21]

Liu X, Fu L, Qin P, Sun Y, Liu J, Wang X. 2019. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene 710:210−17

doi: 10.1016/j.gene.2019.06.006
[22]

Wang CL, Zhang SC, Qi SD, Zheng CC, Wu CA. 2016. Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene 575:206−12

doi: 10.1016/j.gene.2015.08.056
[23]

Yuan G, Liu J, An G, Li W, Si W, et al. 2021. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (TPS) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress. International Journal of Molecular Sciences 23:276

doi: 10.3390/ijms23010276
[24]

Wei XR, Ling W, Ma YW, Du JL, Cao FX, et al. 2022. Genome-wide analysis of the trehalose-6-phosphate synthase gene family in rose (Rosa chinensis) and differential expression under heat stress. Horticulturae 8:429

doi: 10.3390/horticulturae8050429
[25]

Bhattarai S, Harvey JT, Djidonou D, Leskovar DI. 2021. Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants 10:347

doi: 10.3390/plants10020347
[26]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[27]

Ding L, Wu Z, Teng R, Xu S, Cao X, et al. 2021. LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Horticulture Research 8:36

doi: 10.1038/s41438-021-00473-7
[28]

Su L, Zhang Y, Yu S, Geng L, Lin S, et al. 2023. RcbHLH59-RcPRs module enhances salinity stress tolerance by balancing Na+/K+ through callose deposition in rose (Rosa chinensis). Horticulture Research 10:uhac291

doi: 10.1093/hr/uhac291
[29]

Wu Z, Li T, Cao X, Zhang D, Teng N. 2022. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B. Horticulture Research 9:uhac186

doi: 10.1093/hr/uhac186
[30]

Geng L, Yu S, Zhang Y, Su L, Lu W, et al. 2023. Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid–dependent pathway. Plant Physiology 193:1695−712

doi: 10.1093/plphys/kiad366
[31]

Luo Y, Li WM, Wang W. 2008. Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environmental and Experimental Botany 63:378−84

doi: 10.1016/j.envexpbot.2007.11.016
[32]

Raza A, Bhardwaj S, Atikur Rahman M, García-Caparrós P, Habib M, et al. 2024. Trehalose: a sugar molecule involved in temperature stress management in plants. The Crop Journal 12:1−16

doi: 10.1016/j.cj.2023.09.010
[33]

Liu T, Ye X, Li M, Li J, Qi H, Hu X. 2020. H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environmental and Experimental Botany 171:103961

doi: 10.1016/j.envexpbot.2019.103961
[34]

Luo Y, Wang Y, Xie Y, Gao Y, Li W, et al. 2022. Transcriptomic and metabolomic analyses of the effects of exogenous trehalose on heat tolerance in wheat. International Journal of Molecular Sciences 23:5194

doi: 10.3390/ijms23095194
[35]

Luo Y, Wang W, Fan YZ, Gao YM, Wang D. 2018. Exogenously-supplied trehalose provides better protection for D1 protein in winter wheat under heat stress. Russian Journal of Plant Physiology 65:115−22

doi: 10.1134/S1021443718010168
[36]

Yang Y, Yao Y, Li J, Zhang J, Zhang X, et al. 2022. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Frontiers in Plant Science 13:772948

doi: 10.3389/fpls.2022.772948
[37]

Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP. 2019. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytologist 221:1369−86

doi: 10.1111/nph.15464
[38]

Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T. 2022. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Molecular Biology Reports 49:5771−85

doi: 10.1007/s11033-022-07190-x
[39]

Lyu JI, Park JH, Kim JK, Bae CH, Jeong WJ, et al. 2018. Enhanced tolerance to heat stress in transgenic tomato seeds and seedlings overexpressing a trehalose-6-phosphate synthase/phosphatase fusion gene. Plant Biotechnology Reports 12:399−408

doi: 10.1007/s11816-018-0505-8
[40]

Wang P, Lei X, Lü J, Gao C. 2022. Overexpression of the ThTPS gene enhanced salt and osmotic stress tolerance in Tamarix hispida. Journal of Forestry Research 33:299−308

doi: 10.1007/s11676-020-01224-5
[41]

Wang X, Du Y, Yu D. 2019. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. Journal of Integrative Plant Biology 61:509−27

doi: 10.1111/jipb.12704
[42]

Gou B, Duan P, Wei M, Zhao S, Wang Y, et al. 2023. Silencing CaTPS1 increases the sensitivity to low temperature and salt stresses in pepper. Agronomy 13:319

doi: 10.3390/agronomy13020319
[43]

Zhong C, He Z, Liu Y, Li Z, Wang X, et al. 2024. Genome-wide identification of TPS and TPP genes in cultivated peanut (Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress. Frontiers in Plant Science 14:1343402

doi: 10.3389/fpls.2023.1343402
[44]

Vishal B, Krishnamurthy P, Kumar PP. 2024. Arabidopsis class II TPS controls root development and confers salt stress tolerance through enhanced hydrophobic barrier deposition. Plant Cell Reports 43:115

doi: 10.1007/s00299-024-03215-w
[45]

Yuan P, Zhou G, Yu M, Hammond JP, Liu H, et al. 2024. Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in Brassica napus. The Plant Journal 118:437−56

doi: 10.1111/tpj.16617
[46]

Huang XY, Li YY, Zhao TJ, Liu WY, Feng YN, et al. 2022. Overexpression of genes encoding enzymes involved in trehalose synthesis from Caragana korshinskii enhances drought tolerance of transgenic plants. Biologia Plantarum 66:207−18

doi: 10.32615/bp.2022.023