[1]

Zhang H, Liu G, Xue L, Zuo J, Chen T, et al. 2020. Anaerobic digestion based waste-to-energy technologies can halve the climate impact of China's fast-growing food waste by 2040. Journal of Cleaner Production 277:123490

doi: 10.1016/j.jclepro.2020.123490
[2]

Yuan T, Shi X, Sun R, Ko JH, Xu Q. 2021. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion. Journal of Cleaner Production 278:123627

doi: 10.1016/j.jclepro.2020.123627
[3]

Špelić K, Panjičko M, Zupančić GD, Lončar A, Brandić I, et al. 2024. Towards a sustainable energy future: evaluating Arundo donax L. in continuous anaerobic digestion for biogas production. GCB Bioenergy 16(5):e13135

doi: 10.1111/gcbb.13135
[4]

Levavasseur F, Martin L, Boros L, Cadiou J, Carozzi M, et al. 2023. Land cover changes with the development of anaerobic digestion for biogas production in France. GCB Bioenergy 15(5):630−641

doi: 10.1111/gcbb.13042
[5]

Zhang D, Zhu M, Zhou W, Yani S, Zhang Z, Wu J. 2015. A two-phase anaerobic digestion process for biogas production for combined heat and power generation for remote communities. In Handbook of Clean Energy Systems. US: John Wiley & Sons. pp. 213−229 doi: 10.1002/9781118991978.hces003

[6]

Micolucci F, Gottardo M, Pavan P, Cavinato C, Bolzonella D. 2018. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of Cleaner Production 171:1376−1385

doi: 10.1016/j.jclepro.2017.10.080
[7]

Sunyoto NMS, Sugiarto Y, Zhu M, Zhang D. 2019. Transient performance during start-up of a two-phase anaerobic digestion process demonstration unit treating carbohydrate-rich waste with biochar addition. International Journal of Hydrogen Energy 44(28):14341−14350

doi: 10.1016/j.ijhydene.2019.04.037
[8]

Zhang Y, Zhu M, Zhang Z, Chan YL, Zhang D. 2018. Combustion and emission characteristics of simulated biogas from Two-Phase Anaerobic Digestion (T-PAD) in a spark ignition engine. Applied Thermal Engineering 129:927−933

doi: 10.1016/j.applthermaleng.2017.10.045
[9]

Daly SE, Ni JQ. 2023. Characterizing and modeling hydrogen sulfide production in anaerobic digestion of livestock manure, agro-industrial wastes, and wastewater sludge. GCB Bioenergy 15(10):1273−1286

doi: 10.1111/gcbb.13093
[10]

Sugiarto Y, Sunyoto NMS, Zhu M, Jones I, Zhang D. 2021. Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: The role of minerals. International Journal of Hydrogen Energy 46(5):3695−3703

doi: 10.1016/j.ijhydene.2020.10.256
[11]

Sugiarto Y, Sunyoto NMS, Zhu M, Jones I, Zhang D. 2021. Effect of biochar addition on microbial community and methane production during anaerobic digestion of food wastes: The role of minerals in biochar. Bioresource Technology 323(December 2020):124585

doi: 10.1016/j.biortech.2020.124585
[12]

Brawijaya U, Sugiarto Y, Wijayanti UR, Brawijaya U, Sunyoto NMS, et al. 2023. The Effect of Biochar Particle Size on Biogas Production Using Bread Waste Substrate. Jurnal Keteknikan Pertanian Tropis dan Biosistem 11(1):105−115

doi: 10.21776/ub.jkptb.2023.011.01.10
[13]

Ding L, Chan Gutierrez E, Cheng J, Xia A, O'Shea R, et al. 2018. Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate. Energy 151:760−770

doi: 10.1016/j.energy.2018.03.103
[14]

Wang G, Li Y, Sheng L, Xing Y, Liu G, et al. 2020. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. Bioresource Technology 314:123777

doi: 10.1016/j.biortech.2020.123777
[15]

Mosquera V, Gundale MJ, Palviainen M, Laurén A, Laudon H, et al. 2024. Biochar as a potential tool to mitigate nutrient exports from managed boreal forest: A laboratory and field experiment. GCB Bioenergy 16:e13131

doi: 10.1111/gcbb.13131
[16]

Chiappero M, Norouzi O, Hu M, Demichelis F, Berruti F, et al. 2020. Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews 131:110037

doi: 10.1016/j.rser.2020.110037
[17]

Sunyoto NMS, Zhu M, Zhang Z, Zhang D. 2016. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology 219:29−36

doi: 10.1016/j.biortech.2016.07.089
[18]

Gao M, Du P, Zhi B, Liu L, Song Y, et al. 2022. Magnetic biochar affects the metabolic pathway in methanogenesis of anaerobic digestion of food waste. GCB Bioenergy 14(5):572−584

doi: 10.1111/gcbb.12931
[19]

Pan J, Ma J, Zhai L, Liu H. 2019. Enhanced methane production and syntrophic connection between microorganisms during semi-continuous anaerobic digestion of chicken manure by adding biochar. Journal of Cleaner Production 240:118178

doi: 10.1016/j.jclepro.2019.118178
[20]

Shen Y, Yu Y, Zhang Y, Urgun-Demirtas M, Yuan H, et al. 2021. Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge. Journal of Cleaner Production 278:123212

doi: 10.1016/j.jclepro.2020.123212
[21]

Lu Y, Zhang Q, Wang X, Zhong H, Zhu J. 2020. Effects of initial microbial community structure on the performance of solid-state anaerobic digestion of corn stover. Journal of Cleaner Production 198:121007

doi: 10.1016/j.jclepro.2020.121007
[22]

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72(7):5069−5072

doi: 10.1128/AEM.03006-05
[23]

Chinellato G, Cavinato C, Bolzonella D, Heaven S, Banks CJ. 2013. Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control. International Journal of Hydrogen Energy 38(11):4351−4360

doi: 10.1016/j.ijhydene.2013.01.078
[24]

Sunyoto NMS, Zhu M, Zhang Z, Zhang D. 2017. Effect of biochar addition and initial pH on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste. Energy Procedia 105:379−384

doi: 10.1016/j.egypro.2017.03.329
[25]

Zhang J, Fan C, Zang L. 2017. Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresource Technology 245:98−105

doi: 10.1016/j.biortech.2017.08.198
[26]

Jiang Q, Chen Y, Yu S, Zhu R, Zhong C, et al. 2020. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chemical Engineering Journal 398:125643

doi: 10.1016/j.cej.2020.125643
[27]

Zhang G, Shi Y, Zhao Z, Wang X, Dou M. 2020. Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron. Bioresource Technology 306:123122

doi: 10.1016/j.biortech.2020.123122
[28]

Qi Q, Sun C, Zhang J, He Y, Wah Tong Y. 2021. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: The bioavailability of trace elements and potential direct interspecies electron transfer. Chemical Engineering Journal 406:126833

doi: 10.1016/j.cej.2020.126833
[29]

Martinez-Burgos WJ, Sydney EB, de Paula DR, Medeiros ABP, de Carvalho JC, et al. 2020. Biohydrogen production in cassava processing wastewater using microbial consortia: Process optimization and kinetic analysis of the microbial community. Bioresource Technology 309:123331

doi: 10.1016/j.biortech.2020.123331
[30]

Palomo-Briones R, Razo-Flores E, Bernet N, Trably E. 2017. Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Applied Energy 198:77−87

doi: 10.1016/j.apenergy.2017.04.051
[31]

Si B, Liu Z, Zhang Y, Li J, Xing XH, et al. 2015. Effect of reaction mode on biohydrogen production and its microbial diversity. International Journal of Hydrogen Energy 40(8):3191−3200

doi: 10.1016/j.ijhydene.2015.01.030
[32]

Shen Y, Forrester S, Koval J, Urgun-Demirtas M. 2018. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. Journal of Cleaner Production 167:863−874

doi: 10.1016/j.jclepro.2017.05.135
[33]

Jiang Y, Dennehy C, Lawlor PG, Hu Z, McCabe M, et al. 2019. Exploring the roles of and interactions among microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. Biotechnology for Biofuels 12(1):1−16

doi: 10.1186/s13068-018-1344-0
[34]

Gao M, Guo B, Li L, Liu Y. 2021. Role of syntrophic acetate oxidation and hydrogenotrophic methanogenesis in co-digestion of blackwater with food waste. Journal of Cleaner Production 283:125393

doi: 10.1016/j.jclepro.2020.125393
[35]

Rojas-Sossa JP, Murillo-Roos M, Uribe L, Uribe-Lorio L, Marsh T, et al. 2017. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. Bioresource Technology 245:714−723

doi: 10.1016/j.biortech.2017.08.098
[36]

Ho DP, Jensen PD, Batstone DJ. 2013. Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Applied and Environmental Microbiology 79(20):6491−6500

doi: 10.1128/AEM.01730-13