[1]

Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. 2021. Plastics in the Earth system. Science 373:51−55

doi: 10.1126/science.abb0354
[2]

MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373:61−65

doi: 10.1126/science.abg5433
[3]

Arp HPH, Kühnel D, Rummel C, MacLeod M, Potthoff A, et al. 2021. Weathering plastics as a planetary boundary threat: Exposure, fate, and hazards. Environmental Science & Technology 55:7246−7255

doi: 10.1021/acs.est.1c01512
[4]

Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials 344:179−199

doi: 10.1016/j.jhazmat.2017.10.014
[5]

Monclús L, Arp HPH, Groh KJ, Faltynkova A, Løseth ME, et al. 2025. Mapping the chemical complexity of plastics. Nature 643:349−355

doi: 10.1038/s41586-025-09184-8
[6]

Yan Y, Zhu F, Zhu C, Chen Z, Liu S, et al. 2021. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors. Water Research 204:117597

doi: 10.1016/j.watres.2021.117597
[7]

Zhang QQ, Ma ZR, Cai YY, Li HR, Ying GG. 2021. Agricultural plastic pollution in China: generation of plastic debris and emission of phthalic acid esters from agricultural films. Environmental Science & Technology 55:12459−12470

doi: 10.1021/acs.est.1c04369
[8]

Mali H, Shah C, Raghunandan BH, Prajapati AS, Patel DH, et al. 2023. Organophosphate pesticides an emerging environmental contaminant: pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences 127:234−250

doi: 10.1016/j.jes.2022.04.023
[9]

Ma Y, Xie Z, Lohmann R, Mi W, Gao G. 2017. Organophosphate ester flame retardants and plasticizers in ocean sediments from the North Pacific to the Arctic Ocean. Environmental Science & Technology 51:3809−3815

doi: 10.1021/acs.est.7b00755
[10]

Wang X, Zhu Q, Yan X, Wang Y, Liao C, et al. 2020. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. Science of the Total Environment 731:139071

doi: 10.1016/j.scitotenv.2020.139071
[11]

Liu X, Chen D, Yu Y, Zeng X, Li L, et al. 2020. Novel organophosphate esters in airborne particulate matters: occurrences, precursors, and selected transformation products. Environmental Science & Technology 54:13771−13777

doi: 10.1021/acs.est.0c05186
[12]

Wang S, Qian J, Zhang B, Chen L, Wei S, et al. 2023. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China. Environmental Science & Technology 57:1907−1918

doi: 10.1021/acs.est.2c06077
[13]

Rodgers TFM, Giang A, Diamond ML, Gillies E, Saini A. 2023. Emissions and fate of organophosphate esters in outdoor urban environments. Nature Communications 14:1175

doi: 10.1038/s41467-023-36455-7
[14]

Xie Z, Wang P, Wang X, Castro-Jiménez J, Kallenborn R, et al. 2022. Organophosphate ester pollution in the oceans. Nature Reviews Earth & Environment 3:309−322

doi: 10.1038/s43017-022-00277-w
[15]

Hu W, Gao P, Wang L, Hu J. 2023. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action. Critical Reviews in Environmental Science and Technology 53:1−18

doi: 10.1080/10643389.2022.2050147
[16]

Li J, Cao H, Mu Y, Qu G, Zhang A, et al. 2020. Structure-oriented research on the antiestrogenic effect of organophosphate esters and the potential mechanism. Environmental Science & Technology 54:14525−4534

doi: 10.1021/acs.est.0c04376
[17]

Yan Z, Feng C, Jin X, Wang F, Liu C, et al. 2022. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. Environmental Science and Ecotechnology 12:100198

doi: 10.1016/j.ese.2022.100198
[18]

Zhang Q, Yang L, Wang H, Wu C, Cao R, et al. 2024. A comprehensive evaluation of the endocrine-disrupting effects of emerging organophosphate esters. Environment International 193:109120

doi: 10.1016/j.envint.2024.109120
[19]

Wang Q, Lam JCW, Man YC, Lai NL S, Kwok KY, et al. 2015. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Aquatic Toxicology 158:108−115

doi: 10.1016/j.aquatox.2014.11.001
[20]

Louis LM, Buckley JP, Kuiper JR, Meeker JD, Hansel NN, et al. 2023. Exposures to organophosphate esters and respiratory morbidity among school-aged children with asthma. Environmental Science & Technology 57:6435−6443

doi: 10.1021/acs.est.2c05911
[21]

Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, et al. 2021. Beyond cholinesterase inhibition: developmental neurotoxicity of organophosphate ester flame retardants and plasticizers. Environmental Health Perspectives 129:105001

doi: 10.1289/EHP9285
[22]

Zhang S, Zhao M, Li S, Yang R, Yin N, et al. 2024. Developmental toxicity assessment of neonicotinoids and organophosphate esters with a human embryonic stem cell- and metabolism-based fast-screening model. Journal of Environmental Sciences 137:370−381

doi: 10.1016/j.jes.2023.02.022
[23]

Witchey SK, Sutherland V, Collins B, Roberts G, Shockley KR, et al. 2023. Reproductive and developmental toxicity following exposure to organophosphate ester flame retardants and plasticizers, triphenyl phosphate and isopropylated phenyl phosphate, in Sprague Dawley rats. Toxicological Sciences 191:374−386

doi: 10.1093/toxsci/kfac135
[24]

Zhang Y, Qin H, Li B, Yu Z, Zu B, et al. 2025. A Novel organophosphate ester, tris (2,4-ditert-butylphenyl) phosphate, induced reproductive toxicity in male zebrafish at environmentally relevant concentrations. Environmental Science & Technology 59:279−290

doi: 10.1021/acs.est.4c10931
[25]

Li J, He J, Li Y, Liu Y, Li W, et al. 2019. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO). Water Research 154:84−93

doi: 10.1016/j.watres.2019.01.035
[26]

Zhang X, Lu Z, Ren X, Chen X, Zhou X, et al. 2021. Genetic comprehension of organophosphate flame retardants, an emerging threat to prostate cancer. Ecotoxicology and Environmental Safety 223:112589

doi: 10.1016/j.ecoenv.2021.112589
[27]

Liu M, Li A, Meng L, Zhang G, Guan X. et al. 2022. Exposure to novel brominated flame retardants and organophosphate esters and associations with thyroid cancer risk: a case–control study in eastern China. Environmental Science & Technology 56:17825−17835

doi: 10.1021/acs.est.4c00959
[28]

Sun B, Zhou C, Zhu M, Wang S, Zhang L, et al. 2024. Leaching kinetics and bioaccumulation potential of additive-derived organophosphate esters in microplastics. Environmental Pollution 347:123671

doi: 10.1016/j.envpol.2024.123671
[29]

Castro-Jiménez J, Aminot Y, Bely N, Pollono C, Idjaton BIT, et al. 2024. Organophosphate ester additives and microplastics in benthic compartments from the Loire estuary (French Atlantic coast). Marine Pollution Bulletin 201:116256

doi: 10.1016/j.marpolbul.2024.116256
[30]

Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. 2022. An overview of chemical additives on (micro) plastic fibers: occurrence, release, and health risks. Reviews of Environmental Contamination and Toxicology 260:22

doi: 10.1007/s44169-022-00023-9
[31]

Onoja S, Nel HA, Abdallah MAE, Harrad S. 2022. Microplastics in freshwater sediments: Analytical methods, temporal trends, and risk of associated organophosphate esters as exemplar plastics additives. Environmental Research 203:111830

doi: 10.1016/j.envres.2021.111830
[32]

Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, et al. 2022. Defining the chemical additives driving in vitro toxicities of plastics. Environmental Science & Technology 56:14627−14639

doi: 10.1021/acs.est.2c03608
[33]

Fu Z, Xie HB, Elm J, Liu Y, Fu Z, et al. 2022. Atmospheric autoxidation of organophosphate esters. Environmental Science & Technology 56:6944−6955

doi: 10.1021/acs.est.1c04817
[34]

Fang Y, Kim E, Strathmann TJ. 2018. Mineral-and base-catalyzed hydrolysis of organophosphate flame retardants: potential major fate-controlling sink in soil and aquatic environments. Environmental Science & Technology 52:1997−2006

doi: 10.1021/acs.est.7b05911
[35]

Zhou X, Liang Y, Ren G, Zheng K, Wu Y, et al. 2020. Biotransformation of tris (2-chloroethyl) phosphate (TCEP) in sediment microcosms and the adaptation of microbial communities to TCEP. Environmental Science & Technology 54:5489−5497

doi: 10.1021/acs.est.9b07042
[36]

Hochella MF Jr, Mogk DW, Ranville J, Allen IC, Luther GW, et al. 2019. Natural, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363:aau8299

doi: 10.1126/science.aau8299
[37]

Huang X, Hou X, Zhang X, Rosso KM, Zhang L. 2018. Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science-Nano 5:1790−1806

doi: 10.1039/c8en00548f
[38]

Olsson R, Giesler R, Loring JS, Persson P. 2012. Enzymatic hydrolysis of organic phosphates adsorbed on mineral surfaces. Environmental Science & Technology 46:285−291

doi: 10.1021/es2028422
[39]

Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM. 2010. Redox behavior of magnetite: Implications for contaminant reduction. Environmental Science & Technology 44:55−60

doi: 10.1021/es9016848
[40]

Liu C, Li F, Chen M, Liao C, Tong H, et al. 2017. Adsorption and stabilization of lead during Fe(II)-catalyzed phase transformation of ferrihydrite. Acta Chimica Sinica 75:621−628

doi: 10.6023/A17030093
[41]

Aeppli M, Voegelin A, Gorski CA, Hofstetter TB, Sander M. 2018. Mediated electrochemical reduction of iron (oxyhydr-) oxides under defined thermodynamic boundary conditions. Environmental Science & Technology 52:560−570

doi: 10.1021/acs.est.7b04411
[42]

Huang X, Hou X, Song F, Zhao J, Zhang L. 2016. Facet-dependent Cr(VI) adsorption of hematite nanocrystals. Environmental Science & Technology 50:1964−1972

doi: 10.1021/acs.est.5b05111
[43]

Yan W, Jing C. 2018. Molecular insights into glyphosate adsorption to goethite gained from ATR-FTIR, two-dimensional correlation spectroscopy, and DFT study. Environmental Science & Technology 52:1946−1953

doi: 10.1021/acs.est.7b05643
[44]

Francisco PCM, Sato T, Otake T, Kasama T, Suzuki S, et al. 2018. Mechanisms of Se(IV) Co-precipitation with ferrihydrite at acidic and alkaline conditions and its behavior during aging. Environmental Science & Technology 52:4817−4826

doi: 10.1021/acs.est.8b00462
[45]

Ardo SG, Nélieu S, Ona-Nguema G, Delarue G, Brest J, et al. 2015. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2 mediated reactions. Environmental Science & Technology 49:4506−4514

doi: 10.1021/es505649d
[46]

Zhao P, Begg JD, Zavarin M, Tumey SJ, Williams R, et al. 2016. Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: redox transformations and surface precipitation. Environmental Science & Technology 50:6948−6956

doi: 10.1021/acs.est.6b00605
[47]

Lin J, Hu S, Liu T, Li F, Peng L, et al. 2019. Coupled kinetics model for microbially mediated arsenic reduction and adsorption/desorption on iron oxides: role of arsenic desorption induced by microbes. Environmental Science & Technology 53:8892−8902

doi: 10.1021/acs.est.9b00109
[48]

Li T, Zhong W, Jing C, Li X, Zhang T, et al. 2020. Enhanced hydrolysis of p-nitrophenyl phosphate by iron (hydr) oxide nanoparticles: Roles of exposed facets. Environmental Science & Technology 54:8658−8667

doi: 10.1021/acs.est.9b07473
[49]

Dannenberg A, Pehkonen SO. 1998. Investigation of the heterogeneously catalyzed hydrolysis of organophosphorus pesticides. Journal of Agricultural and Food Chemistry 46:325−334

doi: 10.1021/jf970368o
[50]

Wu D, Huang S, Zhang X, Ren H, Jin X, et al. 2021. Iron minerals mediated interfacial hydrolysis of chloramphenicol antibiotic under limited moisture conditions. Environmental Science & Technology 55:9569−9578

doi: 10.1021/acs.est.1c01016
[51]

Jin X, Wu D, Liu C, Huang S, Zhou Z, et al. 2022. Facet effect of hematite on the hydrolysis of phthalate esters under ambient humidity conditions. Nature Communications 13:6125

doi: 10.1038/s41467-022-33950-1
[52]

Pei X, Jiang C, Chen W. 2019. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO2 nanocomposites: the synergistic effect. Environmental Pollution 255:113211

doi: 10.1016/j.envpol.2019.113211
[53]

Jin X, Wu D, Ling J, Wang C, Liu C, et al. 2019. Hydrolysis of chloramphenicol catalyzed by clay minerals under nonaqueous conditions. Environmental Science & Technology 53:10645−10653

doi: 10.1021/acs.est.9b02119
[54]

Sheng F, Ling J, Wang C, Jin X, Gu X, et al. 2019. Rapid hydrolysis of penicillin antibiotics mediated by adsorbed zinc on goethite surfaces. Environmental Science & Technology 53:10705−10713

doi: 10.1021/acs.est.9b02666
[55]

Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A. 2005. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environmental Science & Technology 39:8853−8857

doi: 10.1021/es050720b
[56]

Mahaninia MH, Wilson LD. 2016. Modular cross-linked chitosan beads with calcium doping for enhanced adsorptive uptake of organophosphate anions. Industrial & Engineering Chemistry Research 55:11706−11715

doi: 10.1021/acs.iecr.6b02814
[57]

Akçay M. 2005. The surface acidity and characterization of Fe-montmorillonite probed by in situ FT-IR spectroscopy of adsorbed pyridine. Applied Catalysis A: General 294:156−160

doi: 10.1016/j.apcata.2005.07.019
[58]

Pei X, Wang W, Chen Z, Liu K, Liang Z, et al. 2024. Metal heteroatoms significantly enhance efficacy of TiO2 nanomaterials in promoting hydrolysis of organophosphates: Implications for mitigating pollution of plastic additives. The Science of the Total Environment 957:177548

doi: 10.1016/j.scitotenv.2024.177548
[59]

Kumar KV, Porkodi K, Rocha F. 2008. Langmuir−Hinshelwood kinetics − A theoretical study. Catalysis Communications 9:82−84

doi: 10.1016/j.catcom.2007.05.019
[60]

Sakamoto Y, Noda Y, Ohno K, Koike K, Fujii K, et al. 2019. First principles calculations of surface dependent electronic structures: a study on β-FeOOH and γ-FeOOH. Physical Chemistry Chemical Physics 21:18486−18494

doi: 10.1039/c9cp00157c
[61]

Lv J, Zhang S, Wang S, Luo L, Cao D, et al. 2016. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environmental Science & Technology 50:2328−2336

doi: 10.1021/acs.est.5b04996
[62]

Wu S, Lu J, Ding Z, Li N, Fu F, et al. 2016. Cr(VI) removal by mesoporous FeOOH polymorphs: performance and mechanism. RSC Advances 6:82118−82130

doi: 10.1039/c6ra14522a
[63]

Ding J, Shen L, Yan R, Lu S, Zhang Y, et al. 2020. Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study. Chemosphere 261:127715

doi: 10.1016/j.chemosphere.2020.127715
[64]

Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, et al. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87:1051−1069

doi: 10.1515/pac-2014-1117
[65]

Wang H, Cao S, Kang F, Chen R, Liu H, et al. 2014. Effects of Al substitution on the microstructure and adsorption performance of α-FeOOH. Journal of Alloys and Compounds 606:117−123

doi: 10.1016/j.jallcom.2014.03.185
[66]

Qin M, Lu B, Feng S, Zhen Z, Chen R, et al. 2019. Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst. Chemosphere 230:286−293

doi: 10.1016/j.chemosphere.2019.05.071
[67]

Liang Z, Liu K, Li Y, Liu Y, Jiang C, et al. 2025. Oxygen vacancies boost the efficacy of MnO2 nanoparticles in catalyzing the hydrolytic degradation of organophosphate esters: implications for managing plastic additive pollution. Environmental Science-Nano 12:1364−1374

doi: 10.1039/d4en00911h
[68]

Li Y, Liu K, Guo Y, Wang H, Liang Z, et al. 2025. Mechanistic insights into facet-dependent catalytic hydrolysis of organophosphate ester by α-MnO2 nanorods. Separation and Purification Technology 360:130940

doi: 10.1016/j.seppur.2024.130940
[69]

Luengo C, Brigante M, Antelo J, Avena M. 2006. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science 300:511−518

doi: 10.1016/j.jcis.2006.04.015
[70]

Luo L, Lv J, Chen Z. 2018. Synchrotron infrared microspectroscopy reveals the roles of aliphatic and aromatic moieties in sorption of nitroaromatic compounds to soils. Science of the Total Environment 624:210−214

doi: 10.1016/j.scitotenv.2017.12.141
[71]

Barja BC, Tejedor-Tejedor MI, Anderson MA. 1999. Complexation of methylphosphonic acid with the surface of goethite particles in aqueous solution. Langmuir 15:2316−2321

doi: 10.1021/la980540y
[72]

Parikh SJ, Chorover J. 2006. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir 22:8492−8500

doi: 10.1021/la061359p
[73]

Jiang X, Zhou B, Yang W, Chen J, Miao C, et al. 2024. Precise coordination of high-loading Fe single atoms with sulfur boosts selective generation of nonradicals. Proceedings of the National Academy of Sciences of the United States of America 121:e2309102121

doi: 10.1073/pnas.2309102121
[74]

Li T, Ju Y, Du T, Jiang C, Zhang T, et al. 2024. Anatase TiO2 nanomaterials are much more effective in enhancing hydrolysis of organophosphorus compounds than their rutile counterparts. Environmental Science-Nano 11:2447−2456

doi: 10.1039/d4en00138a
[75]

He L, Jing L, Luan Y, Wang L, Fu H. 2014. Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catalysis 4:990−998

doi: 10.1021/cs401122e
[76]

Bhattacharyya K, Danon A, Vijayan BK, Gray KA, Stair PC, et al. 2013. Role of the surface Lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study. Journal of Physical Chemistry C 117:12661−12678

doi: 10.1021/jp402979m
[77]

Otero-Fariña A, Fiol S, Arce F, Antelo J. 2017. Effects of natural organic matter on the binding of arsenate and copper onto goethite. Chemical Geology 459:119−128

doi: 10.1016/j.chemgeo.2017.04.012
[78]

Schulz K, Wisawapipat W, Barmettler K, Grigg ARC, Kubeneck LJ, et al. 2024. Iron oxyhydroxide transformation in a flooded rice paddy field and the effect of adsorbed phosphate. Environmental Science & Technology 58:10601−10610

doi: 10.1021/acs.est.4c01519