[1]

Praveen S, Jegan J, Bhagavathi Pushpa T, Gokulan R, Bulgariu L. 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar 4:10

doi: 10.1007/s42773-022-00131-8
[2]

Muema FM, Richardson Y, Keita A, Sawadogo M. 2024. An interdisciplinary overview on biochar production engineering and its agronomic applications. Biomass and Bioenergy 190:107416

doi: 10.1016/j.biombioe.2024.107416
[3]

Ibitoye SE, Loha C, Mahamood RM, Jen TC, Alam M, et al. 2024. An overview of biochar production techniques and application in iron and steel industries. Bioresources and Bioprocessing 11:65

doi: 10.1186/s40643-024-00779-z
[4]

Leng L, Xiong Q, Yang L, Li H, Zhou Y, et al. 2021. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763:144204

doi: 10.1016/j.scitotenv.2020.144204
[5]

Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, et al. 2021. Biochar in climate change mitigation. Nature Geoscience 14:883−892

doi: 10.1038/s41561-021-00852-8
[6]

Zhou X, Zhu Y, Niu Q, Zeng G, Lai C, et al. 2021. New notion of biochar: a review on the mechanism of biochar applications in advannced oxidation processes. Chemical Engineering Journal 416:129027

doi: 10.1016/j.cej.2021.129027
[7]

Liu Z, Fei B, Jiang Z, Liu XE. 2014. Combustion characteristics of bamboo-biochars. Bioresource Technology 167:94−99

doi: 10.1016/j.biortech.2014.05.023
[8]

Gurtner D, Kresta M, Hupfauf B, Götz P, Nussbaumer R, et al. 2023. Mechanical strength characterisation of pyrolysis biochar from woody biomass. Energy 285:129366

doi: 10.1016/j.energy.2023.129366
[9]

Zickler GA, Schöberl T, Paris O. 2006. Mechanical properties of pyrolysed wood: a nanoindentation study. Philosophical Magazine 86:1373−1386

doi: 10.1080/14786430500431390
[10]

Videgain M, Manyà JJ, Vidal M, Correa EC, Diezma B, et al. 2021. Influence of feedstock and final pyrolysis temperature on breaking strength and dust production of wood-derived biochars. Sustainability 13:11871

doi: 10.3390/su132111871
[11]

Wallace CA, Afzal MT, Saha GC. 2019. Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing 6:33

doi: 10.1186/s40643-019-0268-2
[12]

Das O, Sarmah AK, Bhattacharyya D. 2015. Structure–mechanics property relationship of waste derived biochars. Science of The Total Environment 538:611−620

doi: 10.1016/j.scitotenv.2015.08.073
[13]

de Abreu Neto R, de Assis AA, Ballarin AW, Hein PRG. 2020. Effect of final temperature on charcoal stiffness and its correlation with wood density and hardness. SN Applied Sciences 2:1020

doi: 10.1007/s42452-020-2822-0
[14]

Sudharshan Phani P, Oliver WC. 2019. A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Materials & Design 164:107563

doi: 10.1016/j.matdes.2018.107563
[15]

Yang L, Takkallapally C, Gabhi RS, Jiang W, Kirk DW, et al. 2022. Wood biochar monolith-based approach to increasing the volumetric energy density of supercapacitor. Industrial & Engineering Chemistry Research 61:7891−7901

doi: 10.1021/acs.iecr.2c00447
[16]

Khelifa M, Fierro V, Macutkevic J, Celzard A. 2018. Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced Material Science 3(2):1−11

doi: 10.15761/ams.1000142
[17]

Pradhan SK, Nayak BB, Sahay SS, Mishra BK. 2009. Mechanical properties of graphite flakes and spherulites measured by nanoindentation. Carbon 47:2290−2292

doi: 10.1016/j.carbon.2009.04.024
[18]

Richter A, Ries R, Smith R, Henkel M, Wolf B. 2000. Nanoindentation of diamond, graphite and fullerene films. Diamond and Related Materials 9:170−184

doi: 10.1016/S0925-9635(00)00188-6
[19]

Kwaśniewska A, Świetlicki M, Prószyński A, Gładyszewski G. 2021. Physical properties of starch/powdered activated carbon composite films. Polymers 13:4406

doi: 10.3390/polym13244406
[20]

Sawanishi C, Ogura T, Sumi H, Oi K, Yasuda K, et al. 2012. Interfacial microstructure observation and nanoindentation measurements in mild steel/HT780 clad plate. Materials Science and Technology 28:1459−1464

doi: 10.1179/1743284712Y.0000000071
[21]

Chen JS, Duh JG. 2001. Indentation behavior and Young's modulus evaluation in electroless Ni modified CrN coating on mild steel. Surface and Coatings Technology 139:6−13

doi: 10.1016/S0257-8972(01)00987-2
[22]

Gabhi R, Basile L, Kirk DW, Giorcelli M, Tagliaferro A, Jia CQ. 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar 2:369−378

doi: 10.1007/s42773-020-00056-0
[23]

Demichelis F, Schreiter S, Tagliaferro A. 1995. Photoluminescence in a-C: H films. Physical Review B 51:2143−2147

doi: 10.1103/PhysRevB.51.2143
[24]

Miccoli I, Edler F, Pfnür H, Tegenkamp C. 2015. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics Condensed Matter 27:223201

doi: 10.1088/0953-8984/27/22/223201
[25]

Das C, Tamrakar S, Kiziltas A, Xie X. 2021. Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers 13:2663

doi: 10.3390/polym13162663
[26]

Aboughaly M, Babaei-Ghazvini A, Dhar P, Patel R, Acharya B. 2023. Enhancing the potential of polymer composites using biochar as a filler: a review. Polymers 15:3981

doi: 10.3390/polym15193981