[1]

Gong Q, Janowski M, Luo M, Wei H, Chen B, et al. 2017. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmology 135:624−30

doi: 10.1001/jamaophthalmol.2017.1091
[2]

Papageorgiou E, Asproudis I, Maconachie G, Tsironi EE, Gottlob I. 2019. The treatment of amblyopia: current practice and emerging trends. Graefe’s Archive for Clinical and Experimental Ophthalmology 257:1061−78

doi: 10.1007/s00417-019-04254-w
[3]

Anderson HA, Glasser A, Stuebing KK, Manny RE. 2009. Minus lens stimulated accommodative lag as a function of age. Optometry and Vision Science 86:685−94

doi: 10.1097/OPX.0b013e3181a7294f
[4]

Harrington SC, Stack J, O'Dwyer V. 2019. Risk factors associated with myopia in schoolchildren in Ireland. British Journal of Ophthalmology 103:1803−9

doi: 10.1136/bjophthalmol-2018-313325
[5]

Singh NK, James RM, Yadav A, Kumar R, Asthana S, et al. 2019. Prevalence of myopia and associated risk factors in schoolchildren in North India. Optometry and Vision Science 96:200−5

doi: 10.1097/OPX.0000000000001344
[6]

Wang J, Ying GS, Fu X, Zhang R, Meng J, et al. 2020. Prevalence of myopia and vision impairment in school students in Eastern China. BMC Ophthalmology 20:2

doi: 10.1186/s12886-019-1281-0
[7]

Hughes RPJ, Read SA, Collins MJ, Vincent SJ. 2020. Changes in ocular biometry during short-term accommodation in children. Ophthalmic & Physiological Optics 40:584−94

doi: 10.1111/opo.12711
[8]

Lütjen E. 1966. Histometric studies on the ciliary muscle in primates [Histometrische Untersuchungen über den Ciliarmuskel der Primaten]. Albrecht Von Graefe’s Archive for Clinical and Experimental Ophthalmology 171:121−33

doi: 10.1007/BF00418250
[9]

Lütjen-Drecoll E, Tamm E, Kaufman PL. 1988. Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. Archives of Ophthalmology 106:1591−98

doi: 10.1001/archopht.1988.01060140759051
[10]

Rohen JW, Kaufman PL, Eichhorn M, Goeckner PA, Bito LZ. 1989. Functional morphology of accommodation in the raccoon. Experimental Eye Research 48:523−27

doi: 10.1016/0014-4835(89)90035-3
[11]

Neider MW, Crawford K, Kaufman PL, Bito LZ. 1990. In vivo videography of the rhesus monkey accommodative apparatus. Age-related loss of ciliary muscle response to central stimulation. Archives of Ophthalmology 108:69−74

doi: 10.1001/archopht.1990.01070030075032
[12]

Croft MA, Kaufman PL, Crawford KS, Neider MW, Glasser A, et al. 1998. Accommodation dynamics in aging rhesus monkeys. The American Journal of Physiology 275:R1885−R1897

doi: 10.1152/ajpregu.1998.275.6.R1885
[13]

Glasser A, Kaufman PL. 1999. The mechanism of accommodation in primates. Ophthalmology 106:863−72

doi: 10.1016/S0161-6420(99)00502-3
[14]

Ostrin LA, Glasser A. 2007. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys. Experimental Eye Research 84:302−13

doi: 10.1016/j.exer.2006.10.003
[15]

Croft MA, Glasser A, Heatley G, McDonald J, Ebbert T, et al. 2006. Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. Investigative Ophthalmology & Visual Science 47:1076−86

doi: 10.1167/iovs.04-1523
[16]

Croft MA, McDonald JP, Katz A, Lin TL, Lütjen-Drecoll E, et al. 2013. Extralenticular and lenticular aspects of accommodation and presbyopia in human versus monkey eyes. Investigative Ophthalmology & Visual Science 54:5035−48

doi: 10.1167/iovs.12-10846
[17]

Lossing LA, Sinnott LT, Kao CY, Richdale K, Bailey MD. 2012. Measuring changes in ciliary muscle thickness with accommodation in young adults. Optometry and Vision Science 89:719−26

doi: 10.1097/OPX.0b013e318252cadc
[18]

Xie X, Sultan W, Corradetti G, Lee JY, Song A, et al. 2022. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single swept-source OCT image acquisitions. Eye 36:119−28

doi: 10.1038/s41433-020-01363-3
[19]

Lewis HA, Kao CY, Sinnott LT, Bailey MD. 2012. Changes in ciliary muscle thickness during accommodation in children. Optometry and Vision Science 89:727−37

doi: 10.1097/OPX.0b013e318253de7e
[20]

Mohamed Farouk M, Naito T, Shinomiya K, Mitamura Y. 2018. Observation of ciliary body changes during accommodation using anterior OCT. The Journal of Medical Investigation 65:60−63

doi: 10.2152/jmi.65.60
[21]

Richdale K, Bullimore MA, Sinnott LT, Zadnik K. 2016. The effect of age, accommodation, and refractive error on the adult human eye. Optometry and Vision Science 93:3−11

doi: 10.1097/OPX.0000000000000757
[22]

Chen L, Jin W, Hao X, Li X, Xing Y. 2021. Dynamic changes of scleral spur length in different accommodation stimuli states. Scientific Reports 11:18176

doi: 10.1038/s41598-021-97754-x
[23]

Wagner S, Schaeffel F, Zrenner E, Straßer T. 2019. Prolonged nearwork affects the ciliary muscle morphology. Experimental Eye Research 186:107741

doi: 10.1016/j.exer.2019.107741
[24]

Oliveira C, Tello C, Liebmann JM, Ritch R. 2005. Ciliary body thickness increases with increasing axial myopia. American Journal of Ophthalmology 140:324−25

doi: 10.1016/j.ajo.2005.01.047
[25]

Fernández-Vigo JI, Shi H, Kudsieh B, Arriola-Villalobos P, De-Pablo Gómez-de-Liaño L, et al. 2020. Ciliary muscle dimensions by swept-source optical coherence tomography and correlation study in a large population. Acta Ophthalmologica 98:e487−e494

doi: 10.1111/aos.14304
[26]

Muftuoglu O, Hosal BM, Zilelioglu G. 2009. Ciliary body thickness in unilateral high axial myopia. Eye 23:1176−81

doi: 10.1038/eye.2008.178
[27]

Bailey MD, Sinnott LT, Mutti DO. 2008. Ciliary body thickness and refractive error in children. Investigative Ophthalmology & Visual Science 49:4353−60

doi: 10.1167/iovs.08-2008
[28]

Pucker AD, Sinnott LT, Kao CY, Bailey MD. 2013. Region-specific relationships between refractive error and ciliary muscle thickness in children. Investigative Ophthalmology & Visual Science 54:4710−16

doi: 10.1167/iovs.13-11658
[29]

Buckhurst H, Gilmartin B, Cubbidge RP, Nagra M, Logan NS. 2013. Ocular biometric correlates of ciliary muscle thickness in human myopia. Ophthalmic & Physiological Optics 33:294−304

doi: 10.1111/opo.12039
[30]

Kuchem MK, Sinnott LT, Kao CY, Bailey MD. 2013. Ciliary muscle thickness in anisometropia. Optometry and Vision Science 90:1312−20

doi: 10.1097/OPX.0000000000000070
[31]

Shi J, Zhao J, Zhao F, Naidu R, Zhou X. 2020. Ciliary muscle morphology and accommodative lag in hyperopic anisometropic children. International Ophthalmology 40:917−24

doi: 10.1007/s10792-019-01264-9
[32]

Wu PC, Chuang MN, Choi J, Chen H, Wu G, et al. 2019. Update in myopia and treatment strategy of atropine use in myopia control. Eye 33:3−13

doi: 10.1038/s41433-018-0139-7
[33]

Ye L, Li S, Shi Y, Yin Y, He J, et al. 2021. Comparisons of atropine versus cyclopentolate cycloplegia in myopic children. Clinical & Experimental Optometry 104:143−50

doi: 10.1111/cxo.13128
[34]

Nickla DL, Zhu X, Wallman J. 2013. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic & Physiological Optics 33:245−56

doi: 10.1111/opo.12054
[35]

Zhang Z, Zhou Y, Xie Z, Chen T, Gu Y, et al. 2016. The effect of topical atropine on the choroidal thickness of healthy children. Scientific Reports 6:34936

doi: 10.1038/srep34936
[36]

Sander BP, Collins MJ, Read SA. 2019. Short-term effect of low-dose atropine and hyperopic defocus on choroidal thickness and axial length in young myopic adults. Journal of Ophthalmology 2019:4782536

doi: 10.1155/2019/4782536
[37]

Zhou Y, Zhu Y, Huang XB, Xiong YJ, Guo YL, et al. 2023. Changes of choroidal thickness in children after short-term application of 1% atropine gel. Ophthalmic Research 66:421−30

doi: 10.1159/000526448
[38]

Jiang Y, Zhang Z, Wu Z, Sun S, Fu Y, et al. 2021. Change and recovery of choroid thickness after short-term application of 1% atropine gel and its influencing factors in 6-7-year-old children. Current Eye Research 46:1171−77

doi: 10.1080/02713683.2020.1863431
[39]

Araki S, Miki A, Goto K, Fujiwara A, Yamashita T, et al. 2023. Changes in choroidal thickness and structure induced by 1% atropine instillation in children with hyperopic anisometropic amblyopia. Journal of Pediatric Ophthalmology and Strabismus 60:39−45

doi: 10.3928/01913913-20220216-03
[40]

Yang YS, Koh JW. 2015. Choroidal blood flow change in eyes with high myopia. Korean Journal of Ophthalmology 29:309−14

doi: 10.3341/kjo.2015.29.5.309
[41]

Liu F, Niu L, Guo J, Jian W, Shang J, et al. 2023. Quantitative evaluation of retinal and choroidal vascularity and retrobulbar blood flow in patients with myopic anisometropia by CDI and OCTA. British Journal of Ophthalmology 107:1172−77

doi: 10.1136/bjophthalmol-2021-320597
[42]

Zhou X, Zhang S, Zhang G, Chen Y, Lei Y, et al. 2020. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs. Investigative Ophthalmology & Visual Science 61:25

doi: 10.1167/iovs.61.13.25
[43]

Chang YC, Liu K, Cabot F, Yoo SH, Ruggeri M, et al. 2018. Variability of manual ciliary muscle segmentation in optical coherence tomography images. Biomedical Optics Express 9:791−800

doi: 10.1364/BOE.9.000791
[44]

Wagner S, Zrenner E, Strasser T. 2019. Emmetropes and myopes differ little in their accommodation dynamics but strongly in their ciliary muscle morphology. Vision Research 163:42−51

doi: 10.1016/j.visres.2019.08.002
[45]

Zhou Y, Huang XB, Cai Q, Li JJ, Xiong YJ, et al. 2020. Comparative study of the effects of 1% atropine on the anterior segment. Journal of Ophthalmology 2020:5125243

doi: 10.1155/2020/5125243
[46]

Bailey MD. 2011. How should we measure the ciliary muscle? Investigative Ophthalmology & Visual Science 52:1817−18

doi: 10.1167/iovs.11-7313
[47]

Van Alphen GWHM. 1986. Choroidal stress and emmetropization. Vision Research 26:723−34

doi: 10.1016/0042-6989(86)90086-6
[48]

Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, et al. 2007. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investigative Ophthalmology & Visual Science 48:2510−19

doi: 10.1167/iovs.06-0562
[49]

Gwiazda J, Thorn F, Held R. 2005. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci 82:273−8

doi: 10.1097/01.OPX.0000159363.07082.7D
[50]

Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML, et al. 2006. Accommodative lag before and after the onset of myopia. Investigative Ophthalmology & Visual Science 47:837−46

doi: 10.1167/iovs.05-0888
[51]

Richdale K, Bailey MD, Sinnott LT, Kao CY, Zadnik K, et al. 2012. The effect of phenylephrine on the ciliary muscle and accommodation. Optometry and Vision Science 89:1507−11

doi: 10.1097/OPX.0b013e318269c8d0
[52]

Bill A. 1967. Effects of atropine and pilocarpine on aqueous humour dynamics in cynomolgus monkeys (Macaca irus). Experimental Eye Research 6:120−25

doi: 10.1016/S0014-4835(67)80062-9
[53]

Bill A. 1969. Effects of atropine on aqueous humor dynamics in the vervet monkey (Cercopithecus ethiops). Experimental Eye Research 8:284−91

doi: 10.1016/S0014-4835(69)80040-0
[54]

Bill A, Phillips CI. 1971. Uveoscleral drainage of aqueous humour in human eyes. Experimental Eye Research 12:275−81

doi: 10.1016/0014-4835(71)90149-7
[55]

McDougal DH, Gamlin PD. 2015. Autonomic control of the eye. Comprehensive Physiology 5:439−73

doi: 10.1002/j.2040-4603.2015.tb00603.x
[56]

Wagner S, Zrenner E, Strasser T. 2018. Ciliary muscle thickness profiles derived from optical coherence tomography images. Biomedical Optics Express 9:5100−14

doi: 10.1364/BOE.9.005100
[57]

Sheppard AL, Davies LN. 2010. In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Investigative Ophthalmology & Visual Science 51:6882−89

doi: 10.1167/iovs.10-5787
[58]

Sheppard AL, Davies LN. 2011. The effect of ageing on in vivo human ciliary muscle morphology and contractility. Investigative Ophthalmology & Visual Science 52:1809−16

doi: 10.1167/iovs.10-6447
[59]

Kao CY, Richdale K, Sinnott LT, Grillott LE, Bailey MD. 2011. Semiautomatic extraction algorithm for images of the ciliary muscle. Optometry and Vision Science 88:275−89

doi: 10.1097/OPX.0b013e3182044b94