[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71:209−49

doi: 10.3322/caac.21660
[2]

Yang H, Wu J, Zhang J, Yang Z, Jin W, et al. 2019. Integrated bioinformatics analysis of key genes involved in progress of colon cancer. Molecular Genetics & Genomic Medicine 7(4):e00588

doi: 10.1002/mgg3.588
[3]

Qin X, Yang Z, Li Y, Luo J, Wang H, et al. 2023. Treatment and prognosis of colorectal cancer with synchronous peritoneal metastases: 11-year single institute experience. eGastroenterology 1:e100016

doi: 10.1136/egastro-2023-100016
[4]

Tolba MF. 2020. Revolutionizing the landscape of colorectal cancer treatment: the potential role of immune checkpoint inhibitors. International Journal of Cancer 147:2996−3006

doi: 10.1002/ijc.33056
[5]

Gibney GT, Weiner LM, Atkins MB. 2016. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology 17:e542−e551

doi: 10.1016/S1470-2045(16)30406-5
[6]

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, et al. 2022. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254−61

doi: 10.1126/science.abf0529
[7]

Li X, Wang L, Li Y, Fu J, Zhen L, et al. 2016. Tyrosine phosphorylation of dihydrolipoamide dehydrogenase as a potential cadmium target and its inhibitory role in regulating mouse sperm motility. Toxicology 357–358:52−64

doi: 10.1016/j.tox.2016.06.003
[8]

Lin J, Wang G, Cheng S, Hu Y, Li H, et al. 2023. Pan-cancer analysis of the cuproptosis-related gene DLD. Mediators of Inflammation 2023:5533444

doi: 10.1155/2023/5533444
[9]

Yang W, Guo Q, Wu H, Tong L, Xiao J, et al. 2023. Comprehensive analysis of the cuproptosis-related gene DLD across cancers: a potential prognostic and immunotherapeutic target. Frontiers in Pharmacology 14:1111462

doi: 10.3389/fphar.2023.1111462
[10]

Qi H, Zhu D. 2023. Oncogenic role of copper-induced cell death-associated protein DLD in human cancer: a pan-cancer analysis and experimental verification. Oncology Letters 25(5):214

doi: 10.3892/ol.2023.13800
[11]

Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, et al. 2013. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Medicine 10(5):e1001453

doi: 10.1371/journal.pmed.1001453
[12]

Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, et al. 2022. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25:18−27

doi: 10.1016/j.neo.2022.01.001
[13]

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, et al. 2017. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649−58

doi: 10.1016/j.neo.2017.05.002
[14]

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. 2015. Tissue-based map of the human proteome. Science 347(6220):1260419

doi: 10.1126/science.1260419
[15]

Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, et al. 2017. A pathology atlas of the human cancer transcriptome. Science 357(6352):eaan2507

doi: 10.1126/science.aan2507
[16]

Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4(1):44−57

doi: 10.1038/nprot.2008.211
[17]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[18]

Li T, Fan J, Wang B, Traugh N, Chen Q, et al. 2017. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research 77(21):e108−e110

doi: 10.1158/0008-5472.CAN-17-0307
[19]

CNCB-NGDC Members and Partners. 2022. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research 50(D1):D27−D38

doi: 10.1093/nar/gkab951
[20]

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77

doi: 10.1186/1471-2105-12-77
[21]

Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, et al. 2013. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics 14:589

doi: 10.1186/1471-2164-14-589
[22]

Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, et al. 2015. Colorectal cancer. Nature Reviews Disease Primers 1:15065

doi: 10.1038/nrdp.2015.65
[23]

Brown KGM, Solomon MJ. 2018. Progress and future direction in the management of advanced colorectal cancer. British Journal of Surgery 105(6):615−17

doi: 10.1002/bjs.10759
[24]

Matsuda T, Yamashita K, Hasegawa H, Oshikiri T, Hosono M, et al. 2018. Recent updates in the surgical treatment of colorectal cancer. Annals of Gastroenterological Surgery 2(2):129−36

doi: 10.1002/ags3.12061
[25]

Duarte IF, Caio J, Moedas M, Rodrigues LA, Leandro APF, et al. 2021. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cellular and Molecular Life Sciences 78(23):7451−68

doi: 10.1007/s00018-021-03996-3
[26]

Fleminger G, Dayan A. 2021. The moonlighting activities of dihydrolipoamide dehydrogenase: biotechnological and biomedical applications. Journal of Molecular Recognition 34(11):e2924

doi: 10.1002/jmr.2924
[27]

Wu H, Wang Y, Tong L, et al. 2021. Global research trends of ferroptosis: a rapidly evolving field with enormous potential. Frontiers in Cell and Developmental Biology 9:646311

doi: 10.3389/fcell.2021.646311
[28]

Xiao C, Yang L, Jin L, Lin W, Zhang F, et al. 2022. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer. Frontiers in Genetics 13:962028

doi: 10.3389/fgene.2022.962028
[29]

Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, et al. 2016. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: implications for the structural basis of E3 deficiency. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1862(11):2098−109

doi: 10.1016/j.bbadis.2016.08.013
[30]

Kim JW, Tchernyshyov I, Semenza GL, Dang CV. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism 3(3):177−85

doi: 10.1016/j.cmet.2006.02.002
[31]

Semenza GL. 2010. HIF-1: upstream and downstream of cancer metabolism. Current Opinion in Genetics & Development 20(1):51−56

doi: 10.1016/j.gde.2009.10.009
[32]

Atlante S, Visintin A, Marini E, Savoia M, Dianzani C, et al. 2018. α-Ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death & Disease 9(7):756

doi: 10.1038/s41419-018-0802-8
[33]

Dayan A, Fleminger G, Ashur-Fabian O. 2019. Targeting the Achilles' heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase. Oncogene 38(25):5050−61

doi: 10.1038/s41388-019-0775-9
[34]

Xue Q, Yan D, Chen X, Li X, Kang R, et al. 2023. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 12:1982−96

doi: 10.1080/15548627.2023.2165323
[35]

Yao Y, Ma W, Guo Y, Liu Y, Xia P, et al. 2022. USP53 plays an antitumor role in hepatocellular carcinoma through deubiquitination of cytochrome c. Oncogenesis 11(1):31

doi: 10.1038/s41389-022-00404-8
[36]

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, et al. 2016. The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics 54:1.30.1−1.30.33

doi: 10.1002/cpbi.5
[37]

Zhang QF, Li YK, Chen CY, Zhang XD, Cao L, et al. 2020. Identification and validation of a prognostic index based on a metabolic-genomic landscape analysis of ovarian cancer. Bioscience Reports 40(9):BSR20201937

doi: 10.1042/BSR20201937
[38]

Nan H, Guo P, Fan J, Zeng W, Hu C, et al. 2023. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma. Frontiers in Immunology 14:1093974

doi: 10.3389/fimmu.2023.1093974
[39]

Hu B, Yin G, Sun X. 2022. Identification of specific role of SNX family in gastric cancer prognosis evaluation. Scientific Reports 12(1):10231

doi: 10.1038/s41598-022-14266-y
[40]

Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. 2021. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39:154−73

doi: 10.1016/j.ccell.2020.10.001
[41]

Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, et al. 2019. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Annals of Oncology 30:44−56

doi: 10.1093/annonc/mdy495
[42]

Klebanov N, Artomov M, Goggins WB, Daly E, Daly MJ, et al. 2019. Burden of unique and low prevalence somatic mutations correlates with cancer survival. Scientific Reports 9:4848

doi: 10.1038/s41598-019-41015-5
[43]

Christenson ES, Lee V, Wang H, Yarchoan M, De Jesus-Acosta A, et al. 2023. Solid organ transplantation is associated with an increased rate of mismatch repair deficiency and PIK3CA mutations in colorectal cancer. Current Oncology 30(1):75−84

doi: 10.3390/curroncol30010006
[44]

Tan ES, Fan W, Knepper TC, Schell MJ, Sahin IH, et al. 2022. Prognostic and predictive value of PIK3CA mutations in metastatic colorectal cancer. Targeted Oncology 17(4):483−92

doi: 10.1007/s11523-022-00898-7
[45]

Yuan H, Yan M, Zhang G, et al. 2019. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Research 47(D1):D900−D908

doi: 10.1093/nar/gky939
[46]

Oliver AJ, Lau PKH, Unsworth AS, Loi S, Darcy PK, et al. 2018. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Frontiers in Immunology 9:70

doi: 10.3389/fimmu.2018.00070
[47]

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, et al. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine 24(5):541−50

doi: 10.1038/s41591-018-0014-x
[48]

Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine 21:938−45

doi: 10.1038/nm.3909
[49]

Picard E, Verschoor CP, Ma GW, Pawelec G. 2020. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Frontiers in Immunology 11:369

doi: 10.3389/fimmu.2020.00369
[50]

Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, et al. 2018. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391:2128−39

doi: 10.1016/s0140-6736(18)30789-x
[51]

Yao X, Jovevski JJ, Todd MF, Xu R, Li Y, et al. 2020. Nanoparticle-mediated intracellular protection of natural killer cells avoids cryoinjury and retains potent antitumor functions. Advanced Science 7(9):1902938

doi: 10.1002/advs.201902938
[52]

Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, et al. 2022. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cellular & Molecular Immunology 19:33−45

doi: 10.1038/s41423-021-00742-4