[1]

Guo W, Cao P, Wang X, Hu M, Feng Y. 2022. Medicinal plants for the treatment of gastrointestinal cancers from the metabolomics perspective. Frontiers in Pharmacology 13:909755

doi: 10.3389/fphar.2022.909755
[2]

Huang K, Zhang P, Zhang Z, Youn JY, Wang C, et al. 2021. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacology & Therapeutics 225:107843

doi: 10.1016/j.pharmthera.2021.107843
[3]

Marks RA, Hotaling S, Frandsen PB, VanBuren R. 2021. Representation and participation across 20 years of plant genome sequencing. Nature Plants 7:1571−78

doi: 10.1038/s41477-021-01031-8
[4]

Liao B, Shen X, Xiang L, Guo S, Chen S, et al. 2022. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant 15:1310−28

doi: 10.1016/j.molp.2022.05.013
[5]

Shen S, Zhan C, Yang C, Fernie AR, Luo J. 2023. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular Plant 16:43−63

doi: 10.1016/j.molp.2022.09.007
[6]

Wang P, Moore BM, Uygun S, Lehti-Shiu MD, Barry CS, et al. 2021. Optimising the use of gene expression data to predict plant metabolic pathway memberships. New Phytologist 231:475−89

doi: 10.1111/nph.17355
[7]

Li Y, Xie Z, Huang Y, Zeng J, Yang C, et al. 2024. Integrated metabolomic and transcriptomic analysis provides insights into the flavonoid formation in different Glycyrrhiza species. Industrial Crops and Products 208:117796

doi: 10.1016/j.indcrop.2023.117796
[8]

Pei Y, Leng L, Sun W, Liu B, Feng X, et al. 2024. Whole-genome sequencing in medicinal plants: current progress and prospect. Science China Life Sciences 67:258−73

doi: 10.1007/s11427-022-2375-y
[9]

Mehrotra S, Goyal V. 2014. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics, Proteomics & Bioinformatics 12: 164−71

[10]

Navrátilová P, Toegelová H, Tulpová Z, Kuo YT, Stein N, et al. 2022. Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnology Journal 20:1373−86

doi: 10.1111/pbi.13816
[11]

Ghaffari R, Cannon EKS, Kanizay LB, Lawrence CJ, Dawe RK. 2013. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination. Chromosoma 122:67−75

doi: 10.1007/s00412-012-0391-8
[12]

Garg V, Bohra A, Mascher M, Spannagl M, Xu X, et al. 2024. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nature Genetics 56:1788−99

doi: 10.1038/s41588-024-01830-7
[13]

Kong W, Wang Y, Zhang S, Yu J, Zhang X. 2023. Recent advances in assembly of complex plant genomes. Genomics, Proteomics & Bioinformatics 21:427−39

doi: 10.1016/j.gpb.2023.04.004
[14]

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93−97

doi: 10.1126/science.aan0032
[15]

Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277−83

doi: 10.1038/s41586-020-2961-x
[16]

Zhuang W, Chen H, Yang M, Wang J, Pandey MK, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics 51:865−76

doi: 10.1038/s41588-019-0402-2
[17]

VanBuren R, Wai CM, Wang X, Pardo J, Yocca AE, et al. 2020. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nature Communications 11:884

doi: 10.1038/s41467-020-14724-z
[18]

Simon A, Coop G. 2024. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proceedings of the National Academy of Sciences of the United States of America 121:e2312377121

doi: 10.1073/pnas.2312377121
[19]

Hu G, Feng J, Xiang X, Wang J, Salojärvi J, et al. 2022. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics 54:73−83

doi: 10.1038/s41588-021-00971-3
[20]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[21]

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84

doi: 10.1038/s41586-019-1852-5
[22]

Yuan J, Jiang S, Jian J, Liu M, Yue Z, et al. 2022. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nature Communications 13:7328

doi: 10.1038/s41467-022-35063-1
[23]

Cheng LT, Wang ZL, Zhu QH, Ye M, Ye CY. 2025. A long road ahead to reliable and complete medicinal plant genomes. Nature Communications 16:2150

doi: 10.1038/s41467-025-57448-8
[24]

Li Z, Chen Y, Mu D, Yuan J, Shi Y, et al. 2012. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Briefings in Functional Genomics 11:25−37

doi: 10.1093/bfgp/elr035
[25]

Khan AR, Pervez MT, Babar ME, Naveed N, Shoaib M. 2018. A comprehensive study of de novo genome assemblers: current challenges and future prospective. Evolutionary Bioinformatics Online 14:1−8

doi: 10.1177/1176934318758650
[26]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36

doi: 10.1101/gr.215087.116
[27]

Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y, et al. 2017. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods 14:1072−74

doi: 10.1038/nmeth.4432
[28]

Ciliberti D, Kloosterman F. 2017. Falcon: a highly flexible open-source software for closed-loop neuroscience. Journal of Neural Engineering 14:045004

doi: 10.1088/1741-2552/aa7526
[29]

Ruan J, Li H. 2019. Fast and accurate long-read assembly with wtdbg2. Nature Methods 17:155−58

doi: 10.1038/s41592-019-0669-3
[30]

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology 37:540−46

doi: 10.1038/s41587-019-0072-8
[31]

Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Research 30:1291−305

doi: 10.1101/gr.263566.120
[32]

Wang Y, Yu J, Jiang M, Lei W, Zhang X, et al. 2023. Sequencing and assembly of polyploid genomes. In Polyploidy. Methods in Molecular Biology, ed. Van de Peer Y. vol 2545. New York: Humana. pp. 429−58 doi: 10.1007/978-1-0716-2561-3_23

[33]

Cosma BM, Shirali Hossein Zade R, Jordan EN, van Lent P, Peng C, et al. 2022. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations. GigaScience 12:giad100

doi: 10.1093/gigascience/giad100
[34]

Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, et al. 2008. The draft genome of the transgenic tropical fruit tree Papaya (Carica papaya Linnaeus). Nature 452:991−96

doi: 10.1038/nature06856
[35]

An D, Zhou Y, Li C, Xiao Q, Wang T, et al. 2019. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proceedings of the National Academy of Sciences of the United States of America 116:18893−99

doi: 10.1073/pnas.1910401116
[36]

Lou H, Song L, Li X, Zi H, Chen W, et al. 2023. The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis. Nature Communications 14:1315

doi: 10.1038/s41467-023-37038-2
[37]

Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, et al. 2010. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology 28:951−56

doi: 10.1038/nbt.1674
[38]

Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. 2020. Plant pan-genomes are the new reference. Nature Plants 6:914−20

doi: 10.1038/s41477-020-0733-0
[39]

Li W, Liu J, Zhang H, Liu Z, Wang Y, et al. 2022. Plant pan-genomics: recent advances, new challenges, and roads ahead. Journal of Genetics and Genomics 49:833−46

doi: 10.1016/j.jgg.2022.06.004
[40]

Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:162−176.e13

doi: 10.1016/j.cell.2020.05.023
[41]

Qin P, Lu H, Du H, Wang H, Chen W, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184:3542−58

doi: 10.1016/j.cell.2021.04.046
[42]

Lynch RC, Padgitt-Cobb LK, Garfinkel AR, Knaus BJ, Hartwick NT, et al. 2025. Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. Nature 643:1001−10

doi: 10.1038/s41586-025-09065-0
[43]

Yang X, Liu D, Tschaplinski TJ, Tuskan GA. 2019. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany 70:6539−47

doi: 10.1093/jxb/erz408
[44]

Wang J, Chen Y, Zou Q. 2023. Comparative genomics and functional genomics analysis in plants. International Journal of Molecular Sciences 24:6539

doi: 10.3390/ijms24076539
[45]

Li Y, Xia C, Luo M, Huang Y, Xia Z, et al. 2025. Comparative genomics of three medicinal Glycyrrhiza species unveiled novel candidates for the production of important bioactive compounds. Plant Journal 122:e70223

[46]

Xu Z, Gao R, Pu X, Xu R, Wang J, et al. 2020. Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genomics, Proteomics & Bioinformatics 18:230−40

doi: 10.1016/j.gpb.2020.06.002
[47]

Yin X, Xiang Y, Huang FQ, Chen Y, Ding H, et al. 2023. Comparative genomics of the medicinal plants Lonicera macranthoides and L. japonica provides insight into genus genome evolution and hederagenin-based saponin biosynthesis. Plant Biotechnology Journal 21:2209−23

doi: 10.1111/pbi.14123
[48]

Li P, Yan MX, Liu P, Yang DJ, He ZK, et al. 2024. Multiomics analyses of two Leonurus species illuminate leonurine biosynthesis and its evolution. Molecular Plant 17:158−77

doi: 10.1016/j.molp.2023.11.003
[49]

Peng M, Shahzad R, Gul A, Subthain H, Shen S, et al. 2017. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications 8:1975

doi: 10.1038/s41467-017-02168-x
[50]

Zhan C, Lei L, Liu Z, Zhou S, Yang C, et al. 2020. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nature Plants 6:1447−54

doi: 10.1038/s41477-020-00816-7
[51]

Chen J, Hu X, Shi T, Yin H, Sun D, et al. 2020. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnology Journal 18:1722−35

doi: 10.1111/pbi.13335
[52]

Li N, He Q, Wang J, Wang B, Zhao J, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics 55:852−60

doi: 10.1038/s41588-023-01340-y
[53]

Wang ZH, Liu X, Cui Y, Wang YH, Lv ZL, et al. 2024. Genomic, transcriptomic, and metabolomic analyses provide insights into the evolution and development of a medicinal plant Saposhnikovia divaricata (Apiaceae). Horticulture Research 11:uhae105

doi: 10.1093/hr/uhae105
[54]

Zhou Y, Bai YH, Han FX, Chen X, Wu FS, et al. 2024. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC Plant Biology 24:446

doi: 10.1186/s12870-024-05006-7
[55]

Li D, Gaquerel E. 2021. Next-generation mass spectrometry metabolomics revives the functional analysis of plant metabolic diversity. Annual Review of Plant Biology 72:867−91

doi: 10.1146/annurev-arplant-071720-114836
[56]

Xu Z, Tian Y, Wang J, Ma Y, Li Q, et al. 2024. Convergent evolution of berberine biosynthesis. Science Advances 10:eads3596

doi: 10.1126/sciadv.ads3596
[57]

Zhang DQ, Liu XY, Qiu LF, Liu ZR, Yang YP, et al. 2024. Two chromosome-level genome assemblies of Rhodiola shed new light on genome evolution in rapid radiation and evolution of the biosynthetic pathway of salidroside. Plant Journal 117:464−82

doi: 10.1111/tpj.16501
[58]

Lv X, Zhu L, Ma D, Zhang F, Cai Z, et al. 2024. Integrated metabolomics and transcriptomics analyses highlight the flavonoid compounds response to alkaline salt stress in Glycyrrhiza uralensis leaves. Journal of Agricultural and Food Chemistry 72:5477−90

doi: 10.1021/acs.jafc.3c07139
[59]

Chen Y, Wang Y, Yang J, Zhou W, Dai S. 2021. Exploring the diversity of plant proteome. Journal of Integrative Plant Biology 63:1197−210

doi: 10.1111/jipb.13087
[60]

Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, et al. 2023. Genomics, proteomics, and metabolomics approaches to improve abiotic stress tolerance in tomato plant. International Journal of Molecular Sciences 24:3025

doi: 10.3390/ijms24033025
[61]

Jiang AL, Liu YN, Liu R, Ren A, Ma HY, et al. 2019. Integrated proteomics and metabolomics analysis provides insights into ganoderic acid biosynthesis in response to methyl jasmonate in Ganoderma Lucidum. International Journal of Molecular Sciences 20:6116

doi: 10.3390/ijms20246116
[62]

Zhang H, Shen X, Sun S, Li Y, Wang S, et al. 2023. Integrated transcriptome and proteome analysis provides new insights into camptothecin biosynthesis and regulation in Camptotheca acuminata. Physiologia Plantarum 175:e13916

doi: 10.1111/ppl.13916
[63]

Zhu W, Han H, Liu A, Guan Q, Kang J, et al. 2021. Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. Journal of Proteomics 233:104081

doi: 10.1016/j.jprot.2020.104081
[64]

Wang Z, Shi H, Yu S, Zhou W, Li J, et al. 2019. Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. Theoretical and Applied Genetics 132:2181−93

doi: 10.1007/s00122-019-03345-w
[65]

Ahmad S, Lu C, Gao J, Wei Y, Xie Q, et al. 2024. Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin−abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinenseOpen Access. Horticulture Research 11:uhae073

doi: 10.1093/hr/uhae073
[66]

Yu J, Han T, Hou Y, Zhao J, Zhang H, et al. 2024. Integrated transcriptomic, proteomic and metabolomic analysis provides new insights into tetracycline stress tolerance in pumpkin. Environmental Pollution 340:122777

[67]

Wang Y, Cui T, Niu K, Ma H. 2024. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. Journal of Hazardous Materials 474:134727

doi: 10.1016/j.jhazmat.2024.134727
[68]

Lloyd JPB, Lister R. 2021. Epigenome plasticity in plants. Nature Reviews Genetics 23:55−68

doi: 10.1038/s41576-021-00407-y
[69]

Wang S, Zhao X, Li C, Dong J, Ma J, et al. 2024. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC genomics 25:330

doi: 10.1186/s12864-024-10237-x
[70]

He X, Chen Y, Xia Y, Hong X, You H, et al. 2024. DNA methylation regulates biosynthesis of tanshinones and phenolic acids during growth of Salvia miltiorrhiza. Plant Physiology 194:2086−100

doi: 10.1093/plphys/kiad573
[71]

Kumar V, Thakur JK, Prasad M. 2021. Histone acetylation dynamics regulating plant development and stress responses. Cellular and Molecular Life Sciences 78:4467-86

[72]

Patrick RM, Huang XQ, Dudareva N, Li Y. 2021. Dynamic histone acetylation in floral volatile synthesis and emission in Petunia flowersOpen Access. Journal of Experimental Botany 72:3704−22

doi: 10.1093/jxb/erab072
[73]

Lu C, Wei Y, Abbas M, Agula H, Wang E, et al. 2024. Application of single-cell assay for transposase-accessible chromatin with high throughput sequencing in plant science: Advances, technical challenges, and prospects. International Journal of Molecular Sciences 25:1479

doi: 10.3390/ijms25031479
[74]

Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nature Communications 12:3334

[75]

Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2021. A Cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041−3055.e21

doi: 10.1016/j.cell.2021.04.014
[76]

Feng D, Liang Z, Wang Y, Yao J, Yuan Z, et al. 2022. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips. BMC Biology 20:274

doi: 10.1186/s12915-022-01473-2
[77]

Liu Q, Ma W, Chen R, Li ST, Wang Q, et al. 2024. Multiome in the same cell reveals the impact of osmotic stress on Arabidopsis root tip development at single-cell level. Advanced Science 11:e2308384

doi: 10.1002/advs.202308384
[78]

Shi C, Cheng L, Yu Y, Chen S, Dai Y, et al. 2024. Multi-omics integration analysis: tools and applications in environmental toxicology. Environmental Pollution 360:124675

doi: 10.1016/j.envpol.2024.124675
[79]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real worldOpen Access. Nucleic Acids Research 53:D672−D677

doi: 10.1093/nar/gkae909
[80]

Pang Z, Lu Y, Zhou G, Hui F, Xu L, et al. 2024. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretationOpen Access. Nucleic Acids Research 52:W398−W406

doi: 10.1093/nar/gkae253
[81]

Sun H, Wang H, Zhu R, Tang K, Gong Q, et al. 2014. iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics 30:737−39

doi: 10.1093/bioinformatics/btt576
[82]

Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, et al. 2022. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Research 50:W551−W559

doi: 10.1093/nar/gkac352
[83]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[84]

Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, et al. 2018. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology 14:e8124

doi: 10.15252/msb.20178124
[85]

Hao N, Ping J, Wang X, Sha X, Wang Y, et al. 2024. Data fusion of near-infrared and mid-infrared spectroscopy for rapid origin identification and quality evaluation of Lonicerae japonicae flos. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 320:124590

doi: 10.1016/j.saa.2024.124590
[86]

Ma Y, Zhong Y, Su Q, Xu L, Song H, et al. 2023. Study on identification algorithm of traditional Chinese medicinals microscopic image based on convolutional neural network. Medicine 102:e34085

doi: 10.1097/MD.0000000000034085
[87]

Song W, Qiao X, Chen K, Wang Y, Ji S, et al. 2017. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Analytical Chemistry 89:3146−53

doi: 10.1021/acs.analchem.6b04919
[88]

Chen S, Yin X, Han J, Sun W, Yao H, et al. 2023. DNA barcoding in herbal medicine: Retrospective and prospective. Journal of Pharmaceutical Analysis 13:431−41

doi: 10.1016/j.jpha.2023.03.008
[89]

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, et al. 2015. Plant DNA barcoding: from gene to genome. Biological Reviews 90:157−66

doi: 10.1111/brv.12104
[90]

Han J, Pang X, Liao B, Yao H, Song J, et al. 2016. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Scientific Reports 6:18723

doi: 10.1038/srep18723
[91]

Hu JL, Ci XQ, Liu ZF, Dormontt EE, Conran JG, et al. 2022. Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Molecular Ecology Resources 22:1478−92

doi: 10.1111/1755-0998.13546
[92]

Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, et al. 2013. The internal transcribed spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLOS One 8:e57934

doi: 10.1371/journal.pone.0057934
[93]

Sucher NJ, Carles MC. 2008. Genome-based approaches to the authentication of medicinal plants. Planta Medica 74:603−23

doi: 10.1055/s-2008-1074517
[94]

Wu L, Wu M, Cui N, Xiang L, Li Y, et al. 2021. Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria. Chinese Medicine 16:52

doi: 10.1186/s13020-021-00460-z
[95]

Xiong X, Gou J, Liao Q, Li Y, Zhou Q, et al. 2021. The Taxus genome provides insights into paclitaxel biosynthesis. Nature Plants 7:1026−36

doi: 10.1038/s41477-021-00963-5
[96]

Jiang B, Gao L, Wang H, Sun Y, Zhang X, et al. 2024. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 383:622−29

doi: 10.1126/science.adj3484
[97]

McClune CJ, Liu JC, Wick C, De La Peña R, Lange BM, et al. 2025. Discovery of FoTO1 and Taxol genes enables biosynthesis of baccatin III. Nature 643:582−92

doi: 10.1038/s41586-025-09090-z
[98]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18

doi: 10.1038/s41588-023-01302-4
[99]

Maekawa S, Imamachi N, Irie T, Tani H, Matsumoto K, et al. 2015. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genomics 16:154

doi: 10.1186/s12864-015-1358-y