[1]

Hu J, Cai J, Xu T, Kang H. 2022. Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application. Plant Biotechnology Journal 20:2245−57

doi: 10.1111/pbi.13913
[2]

Tang J, Chen S, Jia G. 2023. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Communications 4:100546

doi: 10.1016/j.xplc.2023.100546
[3]

Cai J, Shen L, Kang H, Xu T. 2025. RNA modifications in plant adaptation to abiotic stresses. Plant Communications 6:101229

doi: 10.1016/j.xplc.2024.101229
[4]

Liang Z, Riaz A, Chachar S, Ding Y, Du H, et al. 2020. Epigenetic modifications of mRNA and DNA in plants. Molecular Plant 13:14−30

doi: 10.1016/j.molp.2019.12.007
[5]

Hu J, Xu T, Kang H. 2024. Crosstalk between RNA m6A modification and epigenetic factors in plant gene regulation. Plant Communications 5:101037

doi: 10.1016/j.xplc.2024.101037
[6]

Song P, Cai Z, Jia G. 2024. Principles, functions, and biological implications of m6A in plants. RNA 30:491−99

doi: 10.1261/rna.079951.124
[7]

Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, et al. 2016. Compositional control of phase-separated cellular bodies. Cell 166:651−63

doi: 10.1016/j.cell.2016.06.010
[8]

Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. 2021. Nucleation landscape of biomolecular condensates. Nature 599:503−6

doi: 10.1038/s41586-021-03905-5
[9]

Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

doi: 10.1126/science.aaf4382
[10]

Qian ZG, Huang SC, Xia XX. 2022. Synthetic protein condensates for cellular and metabolic engineering. Nature Chemical Biology 18:1330−40

doi: 10.1038/s41589-022-01203-3
[11]

Zhang H, Ji X, Li P, Liu C, Lou J, et al. 2020. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences 63:953−85

doi: 10.1007/s11427-020-1702-x
[12]

Mehta S, Zhang J. 2022. Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nature Reviews Cancer 22:239−52

doi: 10.1038/s41568-022-00444-7
[13]

Qiu H, Wu X, Ma X, Li S, Cai Q, et al. 2024. Short-distance vesicle transport via phase separation. Cell 187:2175−2193.e21

doi: 10.1016/j.cell.2024.03.003
[14]

Peeples W, Rosen MK. 2021. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nature Chemical Biology 17:693−702

doi: 10.1038/s41589-021-00801-x
[15]

Rekhi S, Garcia CG, Barai M, Rizuan A, Schuster BS, et al. 2024. Expanding the molecular language of protein liquid-liquid phase separation. Nature Chemistry 16:1113−24

doi: 10.1038/s41557-024-01489-x
[16]

Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. 2021. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology 17:e1009328

doi: 10.1371/journal.pcbi.1009328
[17]

Malay AD, Suzuki T, Katashima T, Kono N, Arakawa K, et al. 2020. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation. Science Advances 6:eabb6030

doi: 10.1126/sciadv.abb6030
[18]

Novakovic M, Han Y, Kathe NC, Ni Y, Emmanouilidis L, et al. 2025. LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels. Nature Communications 16:4628

doi: 10.1038/s41467-025-59759-2
[19]

Gao Y, Pei G, Li D, Li R, Shao Y, et al. 2019. Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Research 29:767−69

doi: 10.1038/s41422-019-0210-3
[20]

Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, et al. 2019. m6A enhances the phase separation potential of mRNA. Nature 571:424−28

doi: 10.1038/s41586-019-1374-1
[21]

Kang H, Xu T. 2023. N6-methyladenosine RNA methylation modulates liquid-liquid phase separation in plants. The Plant Cell 35:3205−13

doi: 10.1093/plcell/koad103
[22]

Hu Z, Zhou Y, Wang H, Wu Y, Han R, et al. 2025. Dynamic eIF3-S6 phase separation switch instructed by m6A modification drives the molting of locusts. Advanced Science e10505

doi: 10.1002/advs.202510505
[23]

Man J, Zhang Q, Zhao T, Sun D, Long K, et al. 2025. YTHDF2 phase separation promotes arsenite-induced oxidative stress by facilitating YTHDF2-mediated PIK3R2 mRNA degradation. International Journal of Biological Macromolecules 318:144936

doi: 10.1016/j.ijbiomac.2025.144936
[24]

Wang S, Wang Y, Li Q, Zeng K, Li X, et al. 2023. RUNX1-IT1 favors breast cancer carcinogenesis through regulation of IGF2BP1/GPX4 axis. Discover Oncology 14:42

doi: 10.1007/s12672-023-00652-z
[25]

Cui S, Song P, Wang C, Chen S, Hao B, et al. 2024. The RNA binding protein EHD6 recruits the m6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. Molecular Plant 17:935−54

doi: 10.1016/j.molp.2024.05.002
[26]

Wu X, Su T, Zhang S, Zhang Y, Wong CE, et al. 2024. N6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. Nature Plants 10:469−82

doi: 10.1038/s41477-024-01638-7
[27]

Song P, Yang J, Wang C, Lu Q, Shi L, et al. 2021. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Molecular Plant 14:571−87

doi: 10.1016/j.molp.2021.01.014
[28]

Lee HG, Kim J, Seo PJ. 2022. N6-methyladenosine-modified RNA acts as a molecular glue that drives liquid-liquid phase separation in plants. Plant Signaling & Behavior 17:e2079308

doi: 10.1080/15592324.2022.2079308
[29]

Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, et al. 2023. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genetics 19:e1010980

doi: 10.1371/journal.pgen.1010980
[30]

Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, et al. 2024. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. The Plant Cell 36:746−63

doi: 10.1093/plcell/koad300
[31]

Song P, Wei L, Chen Z, Cai Z, Lu Q, et al. 2023. m6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biology 24:103

doi: 10.1186/s13059-023-02947-4
[32]

Tang J, Yang J, Lu Q, Tang Q, Chen S, et al. 2022. The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. Journal of Integrative Plant Biology 64:2361−73

doi: 10.1111/jipb.13394
[33]

Tang J, Yang J, Duan H, Jia G. 2021. ALKBH10B, an mRNA m6A demethylase, modulates ABA response during seed germination in Arabidopsis. Frontiers in Plant Science 12:712713

doi: 10.3389/fpls.2021.712713
[34]

Cai Z, Tang Q, Song P, Tian E, Yang J, et al. 2024. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. The Plant Cell 36:2908−26

doi: 10.1093/plcell/koae149