| [1] |
Hu J, Cai J, Xu T, Kang H. 2022. Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application. |
| [2] |
Tang J, Chen S, Jia G. 2023. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. |
| [3] |
Cai J, Shen L, Kang H, Xu T. 2025. RNA modifications in plant adaptation to abiotic stresses. |
| [4] |
Liang Z, Riaz A, Chachar S, Ding Y, Du H, et al. 2020. Epigenetic modifications of mRNA and DNA in plants. |
| [5] |
Hu J, Xu T, Kang H. 2024. Crosstalk between RNA m6A modification and epigenetic factors in plant gene regulation. |
| [6] |
Song P, Cai Z, Jia G. 2024. Principles, functions, and biological implications of m6A in plants. |
| [7] |
Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, et al. 2016. Compositional control of phase-separated cellular bodies. |
| [8] |
Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. 2021. Nucleation landscape of biomolecular condensates. |
| [9] |
Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. |
| [10] |
Qian ZG, Huang SC, Xia XX. 2022. Synthetic protein condensates for cellular and metabolic engineering. |
| [11] |
Zhang H, Ji X, Li P, Liu C, Lou J, et al. 2020. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. |
| [12] |
Mehta S, Zhang J. 2022. Liquid–liquid phase separation drives cellular function and dysfunction in cancer. |
| [13] |
Qiu H, Wu X, Ma X, Li S, Cai Q, et al. 2024. Short-distance vesicle transport via phase separation. |
| [14] |
Peeples W, Rosen MK. 2021. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. |
| [15] |
Rekhi S, Garcia CG, Barai M, Rizuan A, Schuster BS, et al. 2024. Expanding the molecular language of protein liquid-liquid phase separation. |
| [16] |
Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. 2021. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence. |
| [17] |
Malay AD, Suzuki T, Katashima T, Kono N, Arakawa K, et al. 2020. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation. |
| [18] |
Novakovic M, Han Y, Kathe NC, Ni Y, Emmanouilidis L, et al. 2025. LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels. |
| [19] |
Gao Y, Pei G, Li D, Li R, Shao Y, et al. 2019. Multivalent m6A motifs promote phase separation of YTHDF proteins. |
| [20] |
Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, et al. 2019. m6A enhances the phase separation potential of mRNA. |
| [21] |
Kang H, Xu T. 2023. N6-methyladenosine RNA methylation modulates liquid-liquid phase separation in plants. |
| [22] |
Hu Z, Zhou Y, Wang H, Wu Y, Han R, et al. 2025. Dynamic eIF3-S6 phase separation switch instructed by m6A modification drives the molting of locusts. |
| [23] |
Man J, Zhang Q, Zhao T, Sun D, Long K, et al. 2025. YTHDF2 phase separation promotes arsenite-induced oxidative stress by facilitating YTHDF2-mediated PIK3R2 mRNA degradation. |
| [24] |
Wang S, Wang Y, Li Q, Zeng K, Li X, et al. 2023. RUNX1-IT1 favors breast cancer carcinogenesis through regulation of IGF2BP1/GPX4 axis. |
| [25] |
Cui S, Song P, Wang C, Chen S, Hao B, et al. 2024. The RNA binding protein EHD6 recruits the m6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. |
| [26] |
Wu X, Su T, Zhang S, Zhang Y, Wong CE, et al. 2024. N6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. |
| [27] |
Song P, Yang J, Wang C, Lu Q, Shi L, et al. 2021. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. |
| [28] |
Lee HG, Kim J, Seo PJ. 2022. N6-methyladenosine-modified RNA acts as a molecular glue that drives liquid-liquid phase separation in plants. |
| [29] |
Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, et al. 2023. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. |
| [30] |
Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, et al. 2024. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. |
| [31] |
Song P, Wei L, Chen Z, Cai Z, Lu Q, et al. 2023. m6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. |
| [32] |
Tang J, Yang J, Lu Q, Tang Q, Chen S, et al. 2022. The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. |
| [33] |
Tang J, Yang J, Duan H, Jia G. 2021. ALKBH10B, an mRNA m6A demethylase, modulates ABA response during seed germination in Arabidopsis. |
| [34] |
Cai Z, Tang Q, Song P, Tian E, Yang J, et al. 2024. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. |