[1]

Lonergan P, Forde N. 2015. The role of progesterone in maternal recognition of pregnancy in domestic ruminants. Advances in Anatomy, Embryology, and Cell Biology 216:87−104

doi: 10.1007/978-3-319-15856-3_6
[2]

Wiltbank MC, Souza AH, Carvalho PD, Cunha AP, Giordano JO, et al. 2014. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 8(Suppl 1):70−81

doi: 10.1017/S1751731114000585
[3]

Woad KJ, Robinson RS. 2016. Luteal angiogenesis and its control. Theriogenology 86:221−28

doi: 10.1016/j.theriogenology.2016.04.035
[4]

Hansel W, Alila HW, Dowd JP, Milvae RA. 1991. Differential origin and control mechanisms in small and large bovine luteal cells. Journal of Reproduction and Fertility Supplement 43:77−89

[5]

Channing CP. 1969. Steroidogenesis and morphology of human ovarian cell types in tissue culture. Journal of Endocrinology 45:297−308

doi: 10.1677/joe.0.0450297
[6]

Feng R, Qin X, Li Q, Olugbenga Adeniran S, Huang F, et al. 2022. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways. Theriogenology 186:50−59

doi: 10.1016/j.theriogenology.2022.04.005
[7]

Lonergan P, Sánchez JM. 2020. Symposium review: Progesterone effects on early embryo development in cattle. Journal of Dairy Science 103:8698−707

doi: 10.3168/jds.2020-18583
[8]

Rabaglino MB, Sánchez JM, Mc Donald M, Crowe MA, O'Callaghan E, et al. 2023. Transfer of bovine embryos into a uterus primed with high progesterone concentrations positively impacts fetal development at 42 days of gestation. Theriogenology 200:25−32

doi: 10.1016/j.theriogenology.2023.01.020
[9]

Roberts RM. 2007. Interferon-tau, a type 1 interferon involved in maternal recognition of pregnancy. Cytokine & Growth Factor Reviews 18:403−8

doi: 10.1016/j.cytogfr.2007.06.010
[10]

Fleming JGW, Spencer TE, Safe SH, Bazer FW. 2006. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 147:899−911

doi: 10.1210/en.2005-1120
[11]

Zhang L, Xue J, Wang Q, Lv W, Mi H, et al. 2018. Changes in expression of ISG15, progesterone receptor and progesterone-induced blocking factor in ovine Thymus during early pregnancy. Theriogenology 121:153−59

doi: 10.1016/j.theriogenology.2018.08.018
[12]

Yang L, Wang XL, Wan PC, Zhang LY, Wu Y, et al. 2010. Up-regulation of expression of interferon-stimulated gene 15 in the bovine corpus luteum during early pregnancy. Journal of Dairy Science 93:1000−11

doi: 10.3168/jds.2009-2529
[13]

Guzeloglu A, Bishop JV, Van Campen H, Plewes MR, Gonzalez-Berrios CL, et al. 2024. Interferon-tau infusion into the ovine corpus luteum delays luteolysis. Biology of Reproduction 111:667−77

doi: 10.1093/biolre/ioae084
[14]

Bott RC, Ashley RL, Henkes LE, Antoniazzi AQ, Bruemmer JE, et al. 2010. Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biology of Reproduction 82:725−35

doi: 10.1095/biolreprod.109.079467
[15]

Madureira G, Mion B, Van Winters B, Peñagaricano F, Li J, et al. 2024. Endometrial responsiveness to interferon-tau and its association with subsequent reproductive performance in dairy heifers. Journal of Dairy Science 107:7371−91

doi: 10.3168/jds.2023-24627
[16]

Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, et al. 2010. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Molecular Human Reproduction 16:135−52

doi: 10.1093/molehr/gap095
[17]

Banu SK, Lee J, Stephen SD, Nithy TK, Arosh JA. 2010. Interferon tau regulates PGF2α release from the ovine endometrial epithelial cells via activation of novel JAK/EGFR/ERK/EGR-1 pathways. Molecular Endocrinology 24:2315−30

doi: 10.1210/me.2010-0205
[18]

Lee J, Stanley JA, McCracken JA, Banu SK, Arosh JA. 2014. Intrauterine coadministration of ERK1/2 inhibitor U0126 inhibits interferon TAU action in the endometrium and restores luteolytic PGF2alpha pulses in sheep. Biology of Reproduction 91:46

doi: 10.1095/biolreprod.113.111872
[19]

Krishnaswamy N, Chapdelaine P, Tremblay JP, Fortier MA. 2009. Development and characterization of a Simian virus 40 immortalized bovine endometrial stromal cell line. Endocrinology 150:485−91

doi: 10.1210/en.2008-0744
[20]

Ochoa JC, Peñagaricano F, Baez GM, Melo LF, Motta JCL, et al. 2018. Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F. Biology of Reproduction 98:465−79

doi: 10.1093/biolre/iox183
[21]

Piotrowska-Tomala KK, Jonczyk AW, Szóstek-Mioduchowska AZ, Żebrowska E, Ferreira-Dias G, et al. 2022. The effects of prostaglandin E2 treatment on the secretory function of mare corpus luteum depends on the site of application: an in vivo study. Frontiers in Veterinary Science 8:753796

doi: 10.3389/fvets.2021.753796
[22]

Arosh JA, Banu SK, McCracken JA. 2016. Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. Journal of Dairy Science 99:5926−40

doi: 10.3168/jds.2015-10335
[23]

Arosh JA, Banu SK, Kimmins S, Chapdelaine P, MacLaren LA, et al. 2004. Effect of interferon-τ on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology 145:5280−93

doi: 10.1210/en.2004-0587
[24]

Bu LG, Wang B, Li TY, Sun Y, Kong LL, et al. 2023. An IFNT/FOXO1/PTGS2 axis regulates prostaglandin F synthesis in goat uterus during early pregnancy. Journal of Dairy Science 106:8060−71

doi: 10.3168/jds.2022-23153
[25]

Dorniak P, Bazer FW, Spencer TE. 2013. Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation. Journal of Animal Science 91:1627−38

doi: 10.2527/jas.2012-5845
[26]

Ulbrich SE, Schulke K, Groebner AE, Reichenbach HD, Angioni C, et al. 2009. Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 138:371−82

doi: 10.1530/REP-09-0081
[27]

Lewis GS, Jenkins PE, Fogwell RL, Inskeep EK. 1978. Concentrations of prostaglandins E2 and F and their relationship to luteal function in early pregnant ewes. Journal of Animal Science 47:1314−23

doi: 10.2527/jas1978.4761314x
[28]

Ruiz-González I, Xu J, Wang X, Burghardt RC, Dunlap KA, et al. 2015. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149:281−91

doi: 10.1530/REP-14-0538
[29]

Mathew DJ, Peterson KD, Senn LK, Oliver MA, Ealy AD. 2022. Ruminant conceptus-maternal interactions: interferon-tau and beyond. Journal of Animal Science 100:skac123

doi: 10.1093/jas/skac123
[30]

Ruhmann B, Giller K, Hankele AK, Ulbrich SE, Schmicke M. 2017. Interferon-τ induced gene expression in bovine hepatocytes during early pregnancy. Theriogenology 104:198−204

doi: 10.1016/j.theriogenology.2017.07.051
[31]

Feltrin IR, Melo GD, Freitas PP, Morelli KG, Binelli M, et al. 2025. Conceptus signaling markers in immune cells enhance pregnancy prediction in beef cattle. Scientific Reports 15:17548

doi: 10.1038/s41598-025-01996-y
[32]

Hansen TR, Sinedino LDP, Spencer TE. 2017. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 154:F45−F59

doi: 10.1530/REP-17-0315
[33]

Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL, Smirnova NP, et al. 2013. Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2 alpha-induced luteolysis in ewes. Biology of Reproduction 88:144

doi: 10.1095/biolreprod.112.105684
[34]

Liu H, Wang C, Li Z, Shang C, Zhang X, et al. 2021. Transcriptomic analysis of STAT1/3 in the goat endometrium during embryo implantation. Frontiers in Veterinary Science 8:757759

doi: 10.3389/fvets.2021.757759
[35]

Hughes CHK, Mezera MA, Wiltbank MC, Pate JL. 2022. Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. Journal of Animal Science 100:skac115

doi: 10.1093/jas/skac115
[36]

Binelli M, Subramaniam P, Diaz T, Johnson GA, Hansen TR, et al. 2001. Bovine interferon-τ stimulates the Janus kinase-signal transducer and activator of transcription pathway in bovine endometrial epithelial cells. Biology of Reproduction 64:654−65

doi: 10.1095/biolreprod64.2.654
[37]

Kim MS, Min KS, Imakawa K. 2013. Regulation of interferon-stimulated gene (ISG)12, ISG15, and MX1 and MX2 by conceptus interferons (IFNTs) in bovine uterine epithelial cells. Asian-Australasian Journal of Animal Sciences 26:795−803

doi: 10.5713/ajas.2012.12529
[38]

Basavaraja R, Madusanka ST, Drum JN, Shrestha K, Farberov S, et al. 2019. Interferon-tau exerts direct prosurvival and antiapoptotic actions in luteinized bovine granulosa cells. Scientific Reports 9:14682

doi: 10.1038/s41598-019-51152-6
[39]

Basavaraja R, Przygrodzka E, Pawlinski B, Gajewski Z, Kaczmarek MM, et al. 2017. Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction 154:559−68

doi: 10.1530/REP-17-0290
[40]

Chen Y, Antoniou E, Liu Z, Hearne LB, Roberts RM. 2007. A microarray analysis for genes regulated by interferon-tau in ovine luminal epithelial cells. Reproduction 134:123−35

doi: 10.1530/REP-07-0387
[41]

Hansen TR, Henkes LK, Ashley RL, Bott RC, Antoniazzi AQ, et al. 2010. Endocrine actions of interferon-tau in ruminants. Society of Reproduction and Fertility Supplement 67:325−40

doi: 10.7313/upo9781907284991.026
[42]

Lee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, et al. 2012. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep. Biology of Reproduction 87:97

doi: 10.1093/biolreprod/87.s1.97
[43]

Kumagai A, Yoshioka S, Sakumoto R, Okuda K. 2014. Auto-amplification system for prostaglandin F2α in bovine corpus luteum. Molecular Reproduction and Development 81:646−54

doi: 10.1002/mrd.22332
[44]

Taniguchi K, Matsuoka A, Kizuka F, Lee L, Tamura I, et al. 2010. Prostaglandin F2α (PGF2α) stimulates PTGS2 expression and PGF2α synthesis through NFKB activation via reactive oxygen species in the corpus luteum of pseudopregnant rats. Reproduction 140:885−92

doi: 10.1530/REP-10-0240
[45]

Wiltbank MC, Ottobre JS. 2003. Regulation of intraluteal production of prostaglandins. Reproductive Biology and Endocrinology 1:91

doi: 10.1186/1477-7827-1-91
[46]

Weems YS, Bridges PJ, Jeoung M, Arreguin-Arevalo JA, Nett TM, et al. 2012. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue. Prostaglandins & Other Lipid Mediators 97:60−65

doi: 10.1016/j.prostaglandins.2011.11.006
[47]

Ginther OJ. 2024. Uteroovarian pathway for embryo-empowered maintenance of the corpus luteum in farm animals. Theriogenology 216:103−10

doi: 10.1016/j.theriogenology.2023.12.028
[48]

Fitz TA, Mock EJ, Mayan MH, Niswender GD. 1984. Interactions of prostaglandins with subpopulations of ovine luteal cells. II. Inhibitory effects of PGF and protection by PGE2. Prostaglandins 28:127−38

doi: 10.1016/0090-6980(84)90120-5
[49]

Kim L, Weems YS, Bridges PJ, LeaMaster BR, Ching L, et al. 2001. Effects of indomethacin, luteinizing hormone (LH), prostaglandin E2 (PGE2), trilostane, mifepristone, ethamoxytriphetol (MER-25) on secretion of prostaglandin E (PGE), prostaglandin F (PGF) and progesterone by ovine corpora lutea of pregnancy or the estrous cycle. Prostaglandins & Other Lipid Mediators 63:189−203

doi: 10.1016/S0090-6980(01)00097-1
[50]

Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Ching L, et al. 2001. Effect of the aromatase inhibitor CGS-16949A on pregnancy and secretion of progesterone, estradiol-17β, prostaglandins E and F2α (PGE; PGF2α) and pregnancy specific protein B (PSPB) in 90-day ovariectomized pregnant ewes. Prostaglandins & Other Lipid Mediators 66:77−88

doi: 10.1016/s0090-6980(01)00144-7
[51]

Weems Y S, Bridges P J, Sasser R G, Ching L, LeaMaster B R, et al. 2002. Effect of mifepristone on pregnancy, pregnancy-specific protein B (PSPB), progesterone, estradiol-17β, prostaglandin F2α (PGF2α) and prostaglandin E (PGE) in ovariectomized 90-day pregnant ewes. Prostaglandins & Other Lipid Mediators 70:195−208

doi: 10.1016/S0090-6980(02)00110-7
[52]

Rashid MB, Marey MA, Fukuda K, Haneda S, Kusama K, et al. 2022. Intrauterine infusion of low levels of interferon-tau on day-8 post-estrus stimulates the bovine endometrium to secrete apolipoprotein-A1: a possible implication for early embryo tolerance. American Journal of Reproductive Immunology 88:e13592

doi: 10.1111/aji.13592
[53]

Rizk-Rabin M, Chaoui-Ibadioune S, Vaczlavik A, Ribes C, Polak M, et al. 2020. Link between steroidogenesis, the cell cycle, and PKA in adrenocortical tumor cells. Molecular and Cellular Endocrinology 500:110636

doi: 10.1016/j.mce.2019.110636
[54]

Basavaraja R, Drum JN, Sapuleni J, Bibi L, Friedlander G, et al. 2021. Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC Genomics 22:452

doi: 10.1186/s12864-021-07747-3
[55]

Shirasuna K, Matsumoto H, Matsuyama S, Kimura K, Bollwein H, et al. 2015. Possible role of interferon tau on the bovine corpus luteum and neutrophils during the early pregnancy. Reproduction 150:217−25

doi: 10.1530/REP-15-0085
[56]

Magata F, Shirasuna K, Strüve K, Herzog K, Shimizu T, et al. 2012. Gene expressions in the persistent corpus luteum of postpartum dairy cows: distinct profiles from the corpora lutea of the estrous cycle and pregnancy. Journal of Reproduction and Development 58:445−52

doi: 10.1262/jrd.2011-049
[57]

Mezera MA, Li W, Wiltbank MC. 2021. Pregnancy-induced changes in the transcriptome of the bovine corpus luteum during and after embryonic interferon-tau secretion. Biology of Reproduction 105:148−63

doi: 10.1093/biolre/ioab034
[58]

Taniguchi H, Komiyama J, Viger RS, Okuda K. 2009. The expression of the nuclear receptors NR5A1 and NR5A2 and transcription factor GATA6 correlates with steroidogenic gene expression in the bovine corpus luteum. Molecular Reproduction and Development 76:873−80

doi: 10.1002/mrd.21054
[59]

Hughes CK, Rogus A, Inskeep EK, Pate JL. 2021. NR5A2 and potential regulatory miRNAs in the bovine CL during early pregnancy. Reproduction 161:173−82

doi: 10.1530/REP-20-0009
[60]

Herrmann M, Scholmerich J, Straub RH. 2002. Influence of cytokines and growth factors on distinct steroidogenic enzymes in vitro: a short tabular data collection. Annals of the New York Academy of Sciences 966:166−86

doi: 10.1111/j.1749-6632.2002.tb04213.x
[61]

Lin T, Hu J, Wang D, Stocco DM. 1998. Interferon-gamma inhibits the steroidogenic acute regulatory protein messenger ribonucleic acid expression and protein levels in primary cultures of rat Leydig cells. Endocrinology 139:2217−22

doi: 10.1210/endo.139.5.6006
[62]

Pascuali N, Scotti L, Abramovich D, Irusta G, Di Pietro M, et al. 2015. Inhibition of platelet-derived growth factor (PDGF) receptor affects follicular development and ovarian proliferation, apoptosis and angiogenesis in prepubertal eCG-treated rats. Molecular and Cellular Endocrinology 412:148−58

doi: 10.1016/j.mce.2015.04.021
[63]

Robinson RS, Hammond AJ, Mann GE, Hunter MG. 2008. A novel physiological culture system that mimics luteal angiogenesis. Reproduction 135:405−13

doi: 10.1530/REP-07-0370
[64]

Kwiatkowski SC, Guerrero PA, Hirota S, Chen Z, Morales JE, et al. 2017. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS One 12:e0185065

doi: 10.1371/journal.pone.0185065
[65]

Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, et al. 2013. Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiological Genomics 45:1095−108

doi: 10.1152/physiolgenomics.00082.2013
[66]

Nitta A, Shirasuna K, Haneda S, Matsui M, Shimizu T, et al. 2011. Possible involvement of IFNT in lymphangiogenesis in the corpus luteum during the maternal recognition period in the cow. Reproduction 142:879−92

doi: 10.1530/REP-11-0157
[67]

Ernst H, Konturek PC, Hahn EG, Stosiek HP, Brzozowski T, et al. 2001. Effect of local injection with basic fibroblast growth factor (BFGF) and neutralizing antibody to BFGF on gastric ulcer healing, gastric secretion, angiogenesis and gastric blood flow. Journal of Physiology and Pharmacology 52:377−90

[68]

Fraser HM, Dickson SE, Lunn SF, Wulff C, Morris KD, et al. 2000. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141:995−1000

doi: 10.1210/endo.141.3.7369
[69]

Farberov S, Meidan R. 2016. Thrombospondin-1 affects bovine luteal function via transforming growth factor-beta1-dependent and independent actions. Biology of Reproduction 94:25

doi: 10.1095/biolreprod.115.135822
[70]

Maroni D, Davis JS. 2011. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. Journal of Cell Science 124:2501−10

doi: 10.1242/jcs.084558
[71]

Dau AMP, da Rosa PR, dos Santos J, Ferst J, de Macedo M, et al. 2022. The influence of prorenin/(pro)renin receptor on progesterone secretion by the bovine corpus luteum. Animal Reproduction Science 241:106985

doi: 10.1016/j.anireprosci.2022.106985
[72]

Farberov S, Meidan R. 2014. Functions and transcriptional regulation of thrombospondins and their interrelationship with fibroblast growth factor-2 in bovine luteal cells. Biology of Reproduction 91:58

doi: 10.1095/biolreprod.114.121020
[73]

Rusnati M, Borsotti P, Moroni E, Foglieni C, Chiodelli P, et al. 2019. The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis 22:133−44

doi: 10.1007/s10456-018-9644-3
[74]

Basavaraja R, Madusanka ST, Shrestha K, Przygrodzka E, Kaczmarek MM, et al. 2020. Pentraxin-3 mediates prosurvival actions of interferon tau in bovine luteinized granulosa cells. Reproduction 160:603−12

doi: 10.1530/REP-20-0200
[75]

Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. 2000. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. Journal of Biological Chemistry 275:9390−95

doi: 10.1074/jbc.275.13.9390
[76]

Walusimbi SS, Pate JL. 2013. Physiology and Endocrinology Symposium: role of immune cells in the corpus luteum. Journal of Animal Science 91:1650−59

doi: 10.2527/jas.2012-6179
[77]

Zhao JH, Zheng ST, Lin FP, Wang ZC. 2022. Effects of immune cells on luteal development and regression in the mammalian ovary. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae 44:504−9

doi: 10.3881/j.issn.1000-503X.13309
[78]

Rocha CC, da Silveira JC, Forde N, Binelli M, Pugliesi G. 2021. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Animal Reproduction 18:e20200048

doi: 10.1590/1984-3143-ar2020-0048
[79]

Feng X, Yang C, Wang T, Zhang J, Zhou H, et al. 2025. IFN-τ maintains immune tolerance by promoting M2 macrophage polarization via modulation of bta-miR-30b-5p in early uterine pregnancy in dairy cows. Cells 14:87

doi: 10.3390/cells14020087
[80]

Walusimbi SS, Pate JL. 2014. Luteal cells from functional and regressing bovine corpora lutea differentially alter the function of gamma delta T cells. Biology of Reproduction 90:140

doi: 10.1095/biolreprod.114.117564
[81]

Rashid MB, Talukder AK, Kusama K, Haneda S, Takedomi T, et al. 2018. Evidence that interferon-tau secreted from day-7 embryo in vivo generates anti-inflammatory immune response in the bovine uterus. Biochemical and Biophysical Research Communications 500:879−84

doi: 10.1016/j.bbrc.2018.04.178
[82]

Nakano M, Fujii T, Hashimoto M, Yukawa N, Yoshifuji H, et al. 2012. Type I interferon induces CX3CL1 (fractalkine) and CCL5 (RANTES) production in human pulmonary vascular endothelial cells. Clinical and Experimental Immunology 170:94−100

doi: 10.1111/j.1365-2249.2012.04638.x
[83]

Herman MP, Sukhova GK, Kisiel W, Foster D, Kehry MR, et al. 2001. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. The Journal of Clinical Investigation 107:1117−26

doi: 10.1172/JCI10403
[84]

Miyamoto A, Shirasuna K, Haneda S, Shimizu T, Matsui M. 2014. Cell Biology Symposium: perspectives: possible roles of polymorphonuclear neutrophils in angiogenesis and lymphangiogenesis in the corpus luteum during development and early pregnancy in ruminants. Journal of Animal Science 92:1834−39

doi: 10.2527/jas.2013-7332
[85]

Tanikawa N, Seno K, Kawahara-Miki R, Kimura K, Matsuyama S, et al. 2017. Interferon tau regulates cytokine production and cellular function in human trophoblast cell line. Journal of Interferon & Cytokine Research 37:456−66

doi: 10.1089/jir.2017.0057
[86]

Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, et al. 2013. Macrophages regulate corpus luteum development during embryo implantation in mice. The Journal of Clinical Investigation 123:3472−87

doi: 10.1172/JCI60561
[87]

Joonè CJ, Schulman ML, Fosgate GT, Plagis TA, Crafford JE, et al. 2019. Antigen-specific CD4+ and CD8+ T-cell responses in PBMC from pony mares immunized with either native or recombinant zona Pellucida vaccines. Theriogenology 126:106−13

doi: 10.1016/j.theriogenology.2018.12.012
[88]

Cannon MJ, Pate JL. 2003. The role of major histocompatibility complex molecules in luteal function. Reproductive Biology and Endocrinology 1:93

doi: 10.1186/1477-7827-1-93
[89]

Townson DH, Liptak AR. 2003. Chemokines in the corpus luteum: implications of leukocyte chemotaxis. Reproductive Biology and Endocrinology 1:94

doi: 10.1186/1477-7827-1-94
[90]

Kapoor K, Singh O, Pathak D. 2020. Immunoexpression of cytokine tumour necrosis factor-α suggesting its role in formation and regression of corpus luteum in Indian buffalo. Reproduction in Domestic Animals 55:1393−403

doi: 10.1111/rda.13787
[91]

Galvão AM, Ferreira-Dias G, Skarzynski DJ. 2013. Cytokines and angiogenesis in the corpus luteum. Mediators of Inflammation 2013:420186

doi: 10.1155/2013/420186
[92]

Zelová H, Hošek J. 2013. TNF-α signalling and inflammation: interactions between old acquaintances. Inflammation Research 62:641−51

doi: 10.1007/s00011-013-0633-0
[93]

Atli MO, Bender RW, Mehta V, Bastos MR, Luo W, et al. 2012. Patterns of gene expression in the bovine corpus luteum following repeated intrauterine infusions of low doses of prostaglandin F2alpha. Biology of Reproduction 86:130

doi: 10.1095/biolreprod.111.094870
[94]

Lüttgenau J, Herzog K, Strüve K, Latter S, Boos A, et al. 2016. LPS-mediated effects and spatio-temporal expression of TLR2 and TLR4 in the bovine corpus luteum. Reproduction 151:391−99

doi: 10.1530/REP-15-0520
[95]

Hara K, Shirasuna K, Usui F, Karasawa T, Mizushina Y, et al. 2014. Interferon-tau attenuates uptake of nanoparticles and secretion of interleukin-1β in macrophages. PLoS One 9:e113974

doi: 10.1371/journal.pone.0113974
[96]

Fiorenza MF, Amaral CDS, da Anunciação ARA, Portela VVM, Marey MA, et al. 2021. Possible impact of neutrophils on immune responses during early pregnancy in ruminants. Animal Reproduction 18:e20210048

doi: 10.1590/1984-3143-ar2021-0048