[1]

Latif S, Müller J. 2014. Cassava – how to explore the "all-sufficient". Rural 21 3:30−31

[2]

Enesi RO, Pypers P, Kreye C, Tariku M, Six J, et al. 2022. Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Research 286:108639

doi: 10.1016/j.fcr.2022.108639
[3]

Zhou Q, Gunina A, Chen J, Xing Y, Xiong Y, et al. 2023. Reduction in soil CO2 efflux through alteration of hydrothermal factor in milk vetch (Astragalus sinicus L.)-rapeseed (Brassica napus L.) intercropping system. Frontiers in Plant Science 13:1093507

doi: 10.3389/fpls.2022.1093507
[4]

Attallah A, Hamdi W, Souid A, Farissi M, L'taief B, et al. 2024. Impact of cereal-legume intercropping on changes in soil nutrients contents under semi-arid conditions. Sustainability 16:2725

doi: 10.3390/su16072725
[5]

Zhou X, Zhang J, Shi J, Rahman MK, Liu H, et al. 2024. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. Microbiome 12:207

doi: 10.1186/s40168-024-01914-w
[6]

Gao H, Meng W, Zhang C, van der Werf W, Zhang Z, et al. 2020. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security 9(1):e187

doi: 10.1002/fes3.187
[7]

Boudsocq S, Cros C, Hinsinger P, Lambers H. 2022. Changes in belowground interactions between wheat and white lupin along nitrogen and phosphorus gradients. Plant and Soil 476:97−115

doi: 10.1007/s11104-022-05558-3
[8]

Li L, Tang C, Rengel Z, Zhang FS. 2004. Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil 261:29−37

doi: 10.1023/B:PLSO.0000035579.39823.16
[9]

Inal A, Gunes A, Zhang F, Cakmak I. 2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry 45:350−56

doi: 10.1016/j.plaphy.2007.03.016
[10]

Neumann G, Römheld V. 1999. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil 211:121−30

doi: 10.1023/A:1004380832118
[11]

Gaume A, Mächler F, De León C, Narro L, Frossard E. 2001. Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil 228:253−64

doi: 10.1023/A:1004824019289
[12]

Fan Y, Lu S, He M, Yang L, Hu W, et al. 2021. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma 404:115309

doi: 10.1016/j.geoderma.2021.115309
[13]

Zheng BX, Zhang DP, Wang Y, Hao XL, Wadaan MAM, et al. 2019. Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Scientific Reports 9(1):25

doi: 10.1038/s41598-018-37003-w
[14]

Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology 156:989−96

doi: 10.1104/pp.111.175448
[15]

Wasaki J, Yamamura T, Shinano T, Osaki M. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil 248:129−36

doi: 10.1023/A:1022332320384
[16]

Li SM, Li L, Zhang FS, Tang C. 2004. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany 94:297−303

doi: 10.1093/aob/mch140
[17]

Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423−47

doi: 10.1046/j.1469-8137.2003.00695.x
[18]

Guo Z, Wan S, Hua K, Yin Y, Chu H, et al. 2020. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology 149:103510

doi: 10.1016/j.apsoil.2020.103510
[19]

Gao L, Liu XM, Du YM, Zong H, Shen GM. 2019. Effects of tobacco–peanut relay intercropping on soil bacteria community structure. Annals of Microbiology 69:1531−36

doi: 10.1007/s13213-019-01537-9
[20]

Petrushin IS, Filinova NV, Gutnik DI. 2024. Potato microbiome: relationship with environmental factors and approaches for microbiome modulation. International Journal of Molecular Sciences 25(2):750

doi: 10.3390/ijms25020750
[21]

Wen B, Li L, Duan Y, Zhang Y, Shen J, et al. 2018. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: the concentrations, spatial relationship and potential control. Chemosphere 204:92−100

doi: 10.1016/j.chemosphere.2018.04.026
[22]

Scrimgeour AG, Stahl CH, McClung JP, Marchitelli LJ, Young AJ. 2007. Moderate zinc deficiency negatively affects biomechanical properties of rat tibiae independently of body composition. The Journal of Nutritional Biochemistry 12(18):813−19

doi: 10.1016/j.jnutbio.2006.12.018
[23]

Kwon HY, Hudson RJM, Mulvaney RL. 2009. Characterization of the organic nitrogen fraction determined by the Illinois soil nitrogen test. Soil Science Society of America Journal 73(3):1033−43

doi: 10.2136/sssaj2008.0233
[24]

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10(10):996−98

doi: 10.1038/nmeth.2604
[25]

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5):335−36

doi: 10.1038/nmeth.f.303
[26]

Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, et al. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35:D169−D172

doi: 10.1093/nar/gkl889
[27]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194−200

doi: 10.1093/bioinformatics/btr381
[28]

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537−41

doi: 10.1128/AEM.01541-09
[29]

Shade A, Handelsman J. 2012. Beyond the Venn diagram: the hunt for a core microbiome. Environmental Microbiome 14:4−12

doi: 10.1111/j.1462-2920.2011.02585.x
[30]

An R, Yu RP, Xing Y, Zhang JD, Bao XG, et al. 2023. Intercropping efficiently utilizes phosphorus resource in soil via different strategies mediated by crop traits and species combination. Plant and Soil 497:705−25

doi: 10.1007/s11104-023-06426-4
[31]

Hauggaard-Nielsen H, Jensen ES. 2005. Facilitative root interactions in intercrops. In Root Physiology: from Gene to Function, eds Lambers H, Colmer TD. Dordrecht: Springer. pp. 237–50 doi: 10.1007/1-4020-4099-7-13

[32]

Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, et al. 2011. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology 156:1078−86

doi: 10.1104/pp.111.175331
[33]

Adesoji A, Abubakar IU, Labe DA. 2014. Soil chemical properties as affected by incorporated legumes and nitrogen in soil with maize (Zea mays L.) in a semi-arid environment. International Journal of Agriculture Innovations and Research 3(3):888−94

[34]

Yuan B, Yu D, Hu A, Wang Y, Sun Y, et al. 2023. Effects of green manure intercropping on soil nutrient content and bacterial community structure in litchi orchards in China. Frontiers in Environmental Science 10:1059800

doi: 10.3389/fenvs.2022.1059800
[35]

Kuzyakov Y, Razavi BS. 2019. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biology and Biochemistry 135:343−60

doi: 10.1016/j.soilbio.2019.05.011
[36]

Pang Z, Fallah N, Weng P, Zhou Y, Tang X, et al. 2022. Sugarcane-peanut intercropping system enhances bacteria abundance, diversity, and sugarcane parameters in rhizospheric and bulk soils. Frontiers in Microbiology 12:815129

doi: 10.3389/fmicb.2021.815129
[37]

Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van der Voort M, et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097−100

doi: 10.1126/science.1203980
[38]

Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, et al. 2018. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environmental Microbiology 20(3):1041−63

doi: 10.1111/1462-2920.14043
[39]

Vitorino LC, Layara AB. 2025. Technological microbiology: development and applications. Frontiers in Microbiology 8:827

doi: 10.3389/fmicb.2017.00827
[40]

Jumpponen A, Trappe JM. 1998. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140:295−310

doi: 10.1046/j.1469-8137.1998.00265.x
[41]

Xie L, He X, Wang K, Hou L, Sun Q. 2017. Spatial dynamics of dark septate endophytes in the roots and rhizospheres of Hedysarum scoparium in northwest China and the influence of edaphic variables. Fungal Ecology 26:135−43

doi: 10.1016/j.funeco.2017.01.007
[42]

Li X, He C, He X, Su F, Hou L, et al. 2019. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development. Plant and Soil 439:259−72

doi: 10.1007/s11104-019-04057-2
[43]

Li X, He X, Hou L, Ren Y, Wang S, et al. 2018. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Scientific Reports 8:7896

doi: 10.1038/s41598-018-26183-0
[44]

Keswani CL, Kibani THM, Chowdhury MS. 1977. Effect of intercropping on rhizosphere population in maize (Zea mays L.) and soybean (Glycine max Merill). Agriculture and Environment 3(4):363−68

doi: 10.1016/0304-1131(77)90031-5
[45]

Chen P, He W, Shen Y, Zhu L, Yao X, et al. 2022. Interspecific neighbor stimulates peanut growth through modulating root endophytic microbial community construction. Frontiers in Plant Science 13:830666

doi: 10.3389/fpls.2022.830666
[46]

Yan J, Han XZ, Ji ZJ, Li Y, Wang ET, et al. 2014. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management. Applied and Environmental Microbiology 80:5394−402

doi: 10.1128/AEM.01135-14
[47]

Faucon MP, Houben D, Lambers H. 2017. Plant functional traits: soil and ecosystem services. Trends in Plant Science 22:385−94

doi: 10.1016/j.tplants.2017.01.005
[48]

Berenstecher P, Conti G, Faigón A, Piñeiro G. 2023. Tracing service crops' net carbon and nitrogen rhizodeposition into soil organic matter fractions using dual isotopic brush-labeling. Soil Biology and Biochemistry 184:109096

doi: 10.1016/j.soilbio.2023.109096
[49]

He C, Zhou B, Wang H, Wei Y, Huang J. 2023. A first-year maize/cassava relay intercropping system improves soil nutrients and changes the soil microbial community in the symbiotic period. Frontiers in Microbiology 14:1087202

doi: 10.3389/fmicb.2023.1087202
[50]

Duan Y, Wang T, Lei X, Cao Y, Liu L, et al. 2024. Leguminous green manure intercropping changes the soil microbial community and increases soil nutrients and key quality components of tea leaves. Horticulture Research 11(3):uhae018

doi: 10.1093/hr/uhae018
[51]

Wen B, Zhang X, Ren S, Duan Y, Zhang Y, et al. 2020. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agroforestry Systems 94:963−74

doi: 10.1007/s10457-019-00463-8
[52]

Huang Y, Dai Z, Lin J, Li D, Ye H, et al. 2021. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biology and Biochemistry 163:108465

doi: 10.1016/j.soilbio.2021.108465
[53]

Dong R, Hu W, Bu L, Cheng H, Liu G. 2024. Legume cover crops alter soil phosphorus availability and microbial community composition in mango orchards in karst areas. Agriculture, Ecosystems & Environment 364:108906

doi: 10.1016/j.agee.2024.108906
[54]

Liu W, Zhang Y, Jiang S, Deng Y, Christie P, et al. 2016. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Scientific Reports 6:24902

doi: 10.1038/srep24902
[55]

Jin Z, Jiang F, Wang L, Declerck S, Feng G, et al. 2024. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. Microbiome 12:83

doi: 10.1186/s40168-024-01811-2
[56]

Li QS, Wu LK, Chen J, Khan MA, Luo XM, et al. 2016. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. Journal of Integrative Agriculture 15(1):101−10

doi: 10.1016/S2095-3119(15)61089-9
[57]

Li L, Li SM, Sun JH, Zhou LL, Bao XG, et al. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America 104(27):11192−96

doi: 10.1073/pnas.0704591104