[1]

Qiu L, Cheng X, Wang X, Li Z, Li Y, et al. 2016. Development of a reduced n-decane/α-methylnaphthalene/polycyclic aromatic hydrocarbon mechanism and its application for combustion and soot prediction. Energy & Fuels 30:10875−85

doi: 10.1021/acs.energyfuels.6b02186
[2]

Park H, Shim E, Bae C. 2019. Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations. Fuel 235:763−74

doi: 10.1016/j.fuel.2018.08.045
[3]

Geng L, Xiao Y, Li S, Chen H, Chen X. 2021. Effects of injection timing and rail pressure on particulate size-number distribution of a common rail DI engine fueled with Fischer-Tropsch diesel synthesized from coal. Journal of the Energy Institute 95:219−30

doi: 10.1016/j.joei.2020.08.008
[4]

Ju K, Kim J, Park J. 2021. Numerical prediction of the performance and emission of downsized two-cylinder diesel engine for range extender considering high boosting, heavy exhaust gas recirculation, and advanced injection timing. Fuel 302:121216

doi: 10.1016/j.fuel.2021.121216
[5]

Wai P, Kanokkhanarat P, Oh BS, Wongpattharaworakul V, Depaiwa N, et al. 2022. Experimental investigation of the influence of ethanol and biodiesel on common rail direct injection diesel Engine's combustion and emission characteristics. Case Studies in Thermal Engineering 39:102430

doi: 10.1016/j.csite.2022.102430
[6]

Thakar R, Lahane S, Bhosle S. 2023. Experimental investigation to study combustion and emission characteristics of diesel engine by application of EGR and heated intake air. Materials Today: Proceedings 72:687−93

doi: 10.1016/j.matpr.2022.08.402
[7]

Brown MQ, Belmont EL. 2021. Effects of ozone on n-heptane low temperature chemistry and premixed cool flames. Combustion and Flame 225:20−30

doi: 10.1016/j.combustflame.2020.10.029
[8]

Okafor EC, Kurata O, Yamashita H, Inoue T, Tsujimura T, et al. 2021. Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Applications in Energy and Combustion Science 7:100038

doi: 10.1016/j.jaecs.2021.100038
[9]

Chen B, Liu P, Xu Q, Wang Z, Roberts WL, et al. 2022. Low temperature oxidation of toluene in an n-heptane/toluene mixture. Combustion and Flame 242:112200

doi: 10.1016/j.combustflame.2022.112200
[10]

Dong S, Wang B, Jiang Z, Li Y, Gao W, et al. 2022. An experimental and kinetic modeling study of ammonia/n-heptane blends. Combustion and Flame 246:112428

doi: 10.1016/j.combustflame.2022.112428
[11]

Biswas P, Choudhary R, Hanson RK. 2023. Multiwavelength speciation in pyrolysis of n-pentane and experimental determination of the rate coefficient of nC5H12 = nC3H7 + C2H5 in a shock tube. The Journal of Physical Chemistry A 127:2148−60

doi: 10.1021/acs.jpca.2c07538
[12]

Wang B, Dong S, Jiang Z, Gao W, Wang Z, et al. 2023. Development of a reduced chemical mechanism for ammonia/n-heptane blends. Fuel 338:127358

doi: 10.1016/j.fuel.2022.127358
[13]

Miyoshi A. 2011. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. The Journal of Physical Chemistry A 115:3301−25

doi: 10.1021/jp112152n
[14]

Zeng M, Yuan W, Wang Y, Zhou W, Zhang L, et al. 2014. Experimental and kinetic modeling study of pyrolysis and oxidation of n-decane. Combustion and Flame 161:1701−15

doi: 10.1016/j.combustflame.2014.01.002
[15]

Mao Y, Raza M, Wu Z, Zhu J, Yu L, et al. 2020. An experimental study of n-dodecane and the development of an improved kinetic model. Combustion and Flame 212:388−402

doi: 10.1016/j.combustflame.2019.11.014
[16]

Xu S, Li G, Zhou M, Yu W, Zhang Z, et al. 2022. Experimental and kinetic studies of extinction limits of counterflow cool and hot diffusion flames of ammonia/n-dodecane. Combustion and Flame 245:112316

doi: 10.1016/j.combustflame.2022.112316
[17]

Zhou W, Zhang X, Zhou W, Yang L, Jia Z. 2022. Inhibition mechanism of electric field on polycyclic aromatic hydrocarbon formation during n-decane pyrolysis: a ReaxFF MD and DFT study. Journal of the Energy Institute 102:82−91

doi: 10.1016/j.joei.2022.02.013
[18]

Geng L, Chen Y, Chen X, Lee CF. 2019. Study on combustion characteristics and particulate emissions of a common-rail diesel engine fueled with n-butanol and waste cooking oil blends. Journal of the Energy Institute 92:438−49

doi: 10.1016/j.joei.2018.05.004
[19]

Perini F, Busch S, Reitz RD. 2021. Investigation of post-injection strategies for diesel engine Catalyst Heating Operation using a vapor-liquid-equilibrium-based spray model. The Journal of Supercritical Fluids 167:105042

doi: 10.1016/j.supflu.2020.105042
[20]

Yuan T, Zhang L, Zhou Z, Xie M, Ye L, et al. 2011. Pyrolysis of n-heptane: experimental and theoretical study. The Journal of Physical Chemistry A 115:1593−601

doi: 10.1021/jp109640z
[21]

Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, et al. 2012. Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame 159:3455−71

doi: 10.1016/j.combustflame.2012.07.008
[22]

Loparo ZE, Lopez JG, Neupane S, Partridge WP, Vodopyanov K, et al. 2017. Fuel-rich n-heptane oxidation: a shock tube and laser absorption study. Combustion and Flame 185:220−33

doi: 10.1016/j.combustflame.2017.07.016
[23]

Wang C, Zhong X, Liu H, Song T, Wang H, et al. 2023. Experimental and kinetic modeling studies on oxidation of n-heptane under oxygen enrichment in a jet-stirred reactor. Fuel 332:126033

doi: 10.1016/j.fuel.2022.126033
[24]

Windom B, Won SH, Reuter CB, Jiang B, Ju Y, et al. 2016. Study of ignition chemistry on turbulent premixed flames of n-heptane/air by using a reactor assisted turbulent slot burner. Combustion and Flame 169:19−29

doi: 10.1016/j.combustflame.2016.02.031
[25]

Chu H, Ren F, Xiang L, Dong S, Qiao F, et al. 2019. Numerical investigation on combustion characteristics of laminar premixed n-heptane/air flames at elevated initial temperature and pressure. Journal of the Energy Institute 92:1821−30

doi: 10.1016/j.joei.2018.11.010
[26]

Wullenkord J, Graf I, Baroncelli M, Felsmann D, Cai L, et al. 2020. Laminar premixed and non-premixed flame investigation on the influence of dimethyl ether addition on n-heptane combustion. Combustion and Flame 212:323−36

doi: 10.1016/j.combustflame.2019.11.012
[27]

Xie C, Lailliau M, Issayev G, Xu Q, Chen W, et al. 2022. Revisiting low temperature oxidation chemistry of n-heptane. Combustion and Flame 242:112177

doi: 10.1016/j.combustflame.2022.112177
[28]

Nie X, Qi J, Feng S, Liu Y, Qiu B, et al. 2022. Soot formation in n-heptane/air laminar diffusion flames: effect of toluene addition. Fuel Processing Technology 234:107324

doi: 10.1016/j.fuproc.2022.107324
[29]

Wang D, Yao J, Dong W, Rui Z, Pan W, et al. 2024. Numerical investigation of soot formation in methane/n-heptane laminar diffusion flame doped with hydrogen at elevated pressure. International Journal of Hydrogen Energy 79:1237−49

doi: 10.1016/j.ijhydene.2024.07.082
[30]

Ding J, Zhang L, Han K. 2011. Thermal rate constants of the pyrolysis of n-Heptane. Combustion and Flame 158:2314−24

doi: 10.1016/j.combustflame.2011.04.015
[31]

Huo E, Zhang S, Xin L, Wang S, Cai S, et al. 2022. Pyrolysis mechanism study of n-heptane as an endothermic hydrocarbon fuel: a reactive molecular dynamic simulation and density functional theory calculation study. Computational and Theoretical Chemistry 1211:113696

doi: 10.1016/j.comptc.2022.113696
[32]

Kritikos EM, Lele A, van Duin ACT, Giusti A. 2022. A reactive molecular dynamics study of the effects of an electric field on n-dodecane combustion. Combustion and Flame 244:112238

doi: 10.1016/j.combustflame.2022.112238
[33]

Zheng M, Wang Z, Li X, Qiao X, Song W, et al. 2016. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel 177:130−41

doi: 10.1016/j.fuel.2016.03.008
[34]

Meng Q, Zhao X, Zhang L, Zhang P, Sheng L. 2018. A theoretical kinetics study on low-temperature reactions of methyl acetate radicals with molecular oxygen. Combustion and Flame 196:45−53

doi: 10.1016/j.combustflame.2018.05.023
[35]

Fukui K. 1981. The path of chemical reactions - the IRC approach. Accounts of Chemical Research 14:363−68

doi: 10.1021/ar00072a001
[36]

Power J, Somers KP, Nagaraja SS, Wyrebak W, Curran HJ. 2020. Theoretical study of the reaction of hydrogen atoms with three pentene isomers: 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene. The Journal of Physical Chemistry A 124:10649−66

doi: 10.1021/acs.jpca.0c06389
[37]

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 2016. Gaussian 16 Rev. C. 01. Gaussian, Inc., Wallingford, CT, USA. https://gaussian.com

[38]

Miller JA, Klippenstein SJ. 2006. Master equation methods in gas phase chemical kinetics. The Journal of Physical Chemistry A 110:10528−44

doi: 10.1021/jp062693x
[39]

Meng Q, Lin X, Zhai Y, Zhang L, Zhang P, et al. 2020. A theoretical investigation on Bell-Evans-Polanyi correlations for hydrogen abstraction reactions of large biodiesel molecules by H and OH radicals. Combustion and Flame 214:394−406

doi: 10.1016/j.combustflame.2020.01.005
[40]

Wu X, Wu M, Hou Q, Zhang F. 2023. Theoretical investigation on the reaction kinetics of NO2 with CH3OH and HCHO under combustion conditions. Proceedings of the Combustion Institute 39:581−90

doi: 10.1016/j.proci.2022.07.056
[41]

Ma Z, Xing L, Lian L, Li H, Liu M, et al. 2025. Theoretical investigation on the reaction kinetics of NO2 with cyclopentane, cyclopentene and cyclohexane. Fuel 382:133747

doi: 10.1016/j.fuel.2024.133747
[42]

Mebel AM, Diau EWG, Lin MC, Morokuma K. 1996. Theoretical rate constants for the NH3 + NOx → NH2 + HNOx (x = 1, 2) reactions by ab initio MO/VTST calculations. The Journal of Physical Chemistry 100:7517−25

doi: 10.1021/jp953644f
[43]

Ren Z, Duan Y, Yang W, Han D. 2024. Theoretical study on hydrogen abstraction reactions from pentane isomers by NO2. Fuel 357:129743

doi: 10.1016/j.fuel.2023.129743
[44]

Stylianidis N, Azimov U. 2024. Reduced chemical kinetics mechanism for modelling of n-Heptane/syngas combustion with NOx formation in a micro-pilot ignited dual fuel engine. Fuel 362:130461

doi: 10.1016/j.fuel.2023.130461
[45]

Ji Y, Gao Y, Li G, An T. 2012. Theoretical study of the reaction mechanism and kinetics of low-molecular-weight atmospheric aldehydes (C1−C4) with NO2. Atmospheric Environment 54:288−95

doi: 10.1016/j.atmosenv.2012.02.040
[46]

Ruan S, Yin J, Shi Y, Qin C, Xu K, et al. 2023. A theoretical and modeling study about the low-temperature reaction mechanism between diethoxymethane radicals and O2. Combustion and Flame 249:112616

doi: 10.1016/j.combustflame.2023.112616
[47]

Wang H, Xing L, Xie C, Liu B, Wang H, et al. 2022. Kinetics of H-abstraction from isopentanol and subsequent β-dissociation and isomerization. Combustion and Flame 246:112393

doi: 10.1016/j.combustflame.2022.112393
[48]

Shi L, Chen D, Zheng Z, Xu P, Wang R, et al. 2021. An experimental and kinetic study the effect of nitrogen dioxide addition on autoignition of n-heptane. Combustion and Flame 232:111540

doi: 10.1016/j.combustflame.2021.111540