[1]

Han Y, He Y, Yue S, Guo B, Zhu Q, et al. 2023. Floral bud differentiation and mechanism underlying androdioecy of Osmanthus fragrans. Ornamental Plant Research 3:11

doi: 10.48130/OPR-2023-0011
[2]

Fukazawa J, Ohashi Y, Takahashi R, Nakai K, Takahashi Y. 2021. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. The Plant Cell 33:2258−72

doi: 10.1093/plcell/koab102
[3]

Pouteau S, Albertini C. 2009. The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany 60:3367−77

doi: 10.1093/jxb/erp173
[4]

Gol L, Tomé F, von Korff M. 2017. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. Journal of Experimental Botany 68:1399−410

doi: 10.1093/jxb/erx055
[5]

Golz JF, Hudson A. 2002. Signaling in plant lateral organ development. The Plant Cell 14:S277−S288

doi: 10.1105/tpc.000828
[6]

Olszewski N, Sun TP, Gubler F. 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14:S61−S80

doi: 10.1105/tpc.010476
[7]

Sumitomo K, Li T, Hisamatsu T. 2009. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL, a chrysanthemum FLORICAULA/LEAFY homologous gene. Plant Science 176:643−49

doi: 10.1016/j.plantsci.2009.02.003
[8]

Li W, Yong Y, Zhang Y, Lyu Y. 2019. Transcriptional regulatory network of GA floral induction pathway in LA hybrid lily. International Journal of Molecular Sciences 20:2694

doi: 10.3390/ijms20112694
[9]

Yin Y, Li J, Guo B, Li L, Ma G, et al. 2022. Exogenous GA3 promotes flowering in Paphiopedilum callosum (Orchidaceae) through bolting and lateral flower development regulation. Horticulture Research 9:uhac091

doi: 10.1093/hr/uhac091
[10]

Nagai K, Kondo Y, Kitaoka T, Noda T, Kuroha T, et al. 2014. QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB Plants 6:plu028

doi: 10.1093/aobpla/plu028
[11]

Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, et al. 2009. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current Biology 19:1188−93

doi: 10.1016/j.cub.2009.05.059
[12]

Guo Y, Deng C, Feng G, Liu D. 2024. Genome-wide analysis of phytochrome-interacting factor (PIF) families and their potential roles in light and gibberellin signaling in Chinese pine. BMC Genomics 25:1017

doi: 10.1186/s12864-024-10915-w
[13]

Wang S, Luo C, Sun L, Ning K, Chen Z, et al. 2022. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway. Plant Science 316:111175

doi: 10.1016/j.plantsci.2021.111175
[14]

Yang T, Law DM, Davies PJ. 1993. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiology 102:717−24

doi: 10.1104/pp.102.3.717
[15]

Xu RY, Niimi Y, Ohta Y, Kojima K. 2008. Changes in diffusible indole-3-acetic acid from various parts of tulip plant during rapid elongation of the flower stalk. Plant Growth Regulation 54:81−88

doi: 10.1007/s10725-007-9230-y
[16]

Kou E, Huang X, Zhu Y, Su W, Liu H, et al. 2021. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Scientific Reports 11:3976

doi: 10.1038/s41598-021-83519-z
[17]

Ross JJ, O'Neill DP, Rathbone DA. 2003. Auxin-gibberellin interactions in pea: integrating the old with the new. Journal of Plant Growth Regulation 22:99−108

doi: 10.1007/s00344-003-0021-z
[18]

Dharmasiri N, Estelle M. 2004. Auxin signaling and regulated protein degradation. Trends in Plant Science 9:302−8

doi: 10.1016/j.tplants.2004.04.003
[19]

Leyser O. 2018. Auxin signaling. Plant Physiology 176:465−79

doi: 10.1104/pp.17.00765
[20]

Zhang M, Wang W, Liu Q, Zang E, Wu L, et al. 2023. Transcriptome analysis of Saposhnikovia divaricata and mining of bolting and flowering genes. Chinese Herbal Medicines 15:574−87

doi: 10.1016/j.chmed.2022.08.008
[21]

Zhang Y, Nie C, Zhang J, Guo W, Ding P, et al. 2023. A gibberellin-responsive transcription factor from Phalaenopsis 'Big Chili' (PIF4) promotes flowering in Arabidopsis thaliana. Plant Growth Regulation 101:361−71

doi: 10.1007/s10725-023-01023-y
[22]

Roumeliotis E, Visser RGF, Bachem CWB. 2012. A crosstalk of auxin and GA during tuber development. Plant Signaling & Behavior 7:1360−63

doi: 10.4161/psb.21515
[23]

Collen M, Elizabeth Bosede A, Adebowale Emmanuel A. 2021. Clivia miniata (Lindl.) Bosse, (Amaryllidaceae): botany, medicinal uses, phytochemistry and pharmacological properties. Journal of Applied Pharmaceutical Science 11:12−18

doi: 10.7324/JAPS.2021.110202
[24]

Funnell KA. 2017. Scheduling flowering in Clivia miniata Regel for different markets. Acta Horticulturae 1171:39−46

doi: 10.17660/actahortic.2017.1171.6
[25]

Ji Y, Zhang H, Wang C, Wang C, Zhao J, et al. 2024. What is going on with the flower bud differentiation and metabolites control of scape elongation on Clivia miniata Regel? Scientia Horticulturae 324:112626

doi: 10.1016/j.scienta.2023.112626
[26]

Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78:779−87

doi: 10.1021/ac051437y
[27]

Wen B, Mei Z, Zeng C, Liu S. 2017. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 18:183

doi: 10.1186/s12859-017-1579-y
[28]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[29]

Li Y, Gao R, Zhang J, Wang Y, Kong P, et al. 2022. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata. Horticulture Research 9:uhac114

doi: 10.1093/hr/uhac114
[30]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real–time quantitative PCR and the 2–ΔΔCT method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[31]

Zhao J, Bo K, Pan Y, Li Y, Yu D, et al. 2023. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin-and auxin-dependent growth in cucumber hypocotyls. Journal of Experimental Botany 74(15):4520−39

doi: 10.1093/jxb/erad181
[32]

Zhang YW, Jin D, Xu C, Zhang L, Guo MH, et al. 2015. Regulation of bolting and identification of the α-tubulin gene family in Brassica rapa L. ssp. pekinensis. Genetics and Molecular Research 15:1−13

doi: 10.4238/gmr.15017507
[33]

Hall R, Beale M, Fiehn O, Hardy N, Sumner L, et al. 2002. Plant metabolomics: the missing link in functional genomics strategies. The Plant Cell 14:1437−40

doi: 10.1105/tpc.140720
[34]

Zhu C, Bai Y, Jiang Y, Zhang Y, Wang S, et al. 2024. Integrated transcriptomic and metabolomic analysis reveals the regulation mechanism of early bolting and flowering in two cultivars of Angelica sinensis. Heliyon 15:e28636

doi: 10.1016/j.heliyon.2024.e28636
[35]

Yan X, Liu J, Wu KX, Yang N, Pan LB, et al. 2022. Comparative analysis of endogenous hormones and metabolite profiles in early-spring flowering plants and unflowered plants revealing the strategy of blossom. Journal of Plant Growth Regulation 41:2421−34

doi: 10.1007/s00344-021-10452-w
[36]

Cai K, Zhu S, Jiang Z, Xu K, Sun X, et al. 2024. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: a comprehensive review. Plant Physiology and Biochemistry 214:108931

doi: 10.1016/j.plaphy.2024.108931
[37]

Teotia S, Tang G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8:359−77

doi: 10.1016/j.molp.2014.12.018
[38]

Zhang N, Xie YD, Guo HJ, Zhao LS, Xiong HC, et al. 2016. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 107:228−36

doi: 10.1016/j.plaphy.2016.06.008
[39]

Dahanayake SR, Galwey NW. 1999. Effects of interactions between low-temperature treatments, gibberellin (GA3) and photoperiod on flowering and stem height of spring rape (Brassica napus var. annua). Annals of Botany 84:321−327

doi: 10.1006/anbo.1999.0920
[40]

Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M. 2002. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. The Plant Cell 14:57−70

doi: 10.1105/tpc.010319
[41]

Murase K, Hirano Y, Sun TP, Hakoshima T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459−63

doi: 10.1038/nature07519
[42]

Dill A, Thomas SG, Hu J, Steber CM, Sun TP. 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell 16:1392−405

doi: 10.1105/tpc.020958
[43]

Harberd NP, Belfield E, Yasumura Y. 2009. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. The Plant Cell 21:1328−39

doi: 10.1105/tpc.109.066969
[44]

Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61:49−64

doi: 10.1146/annurev-arplant-042809-112308
[45]

Edelbluth E., Kaldewey H. 1976. Auxin in scapes, flower buds, flowers, and fruits of daffodil (Narcissus pseudonarcissus L.). Planta 131:285−91

doi: 10.1007/BF00385428
[46]

Wang Y, Li B, Li Y, Du W, Zhang Y, et al. 2022. Application of exogenous auxin and gibberellin regulates the bolting of lettuce (Lactuca sativa L.). Open Life Sciences 17:438−46

doi: 10.1515/biol-2022-0043
[47]

Chen C, Huang W, Hou K, Wu W. 2019. Bolting, an important process in plant development, two types in plants. Journal of Plant Biology 62:161−69

doi: 10.1007/s12374-018-0408-9
[48]

Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology 64:371−92

doi: 10.1111/jipb.13225
[49]

Abel S, Theologis A. 1996. Early genes and auxin action. Plant Physiology 111:9−17

doi: 10.1104/pp.111.1.9
[50]

Hu M, Qi Z, Ren Z, Tong J, Wang B, et al. 2022. Genome-wide analysis of auxin response factors in lettuce (Lactuca sativa L.) reveals the positive roles of LsARF8a in thermally induced bolting. International Journal of Molecular Sciences 23(21):13509

doi: 10.3390/ijms232113509
[51]

Yang X, Jia K, Zhu J, Zhang Y, Tian Y, et al. 2023. Gene characterization and protein expression analysis of LsARF2 in lettuce (Lactuca sativa L.) under high temperature. Journal of Agricultural Science 15:42

doi: 10.5539/jas.v15n9p42
[52]

Li Y, Zhu J, Feng Y, Li Z, Ren Z, et al. 2022. LsARF3 mediates thermally induced bolting through promoting the expression of LsCO in lettuce (Lactuca sativa L.). Frontiers in Plant Science 13:958833

doi: 10.3389/fpls.2022.958833