[1]

LeRoy P. 1995. Troubled waters: population and water scarcity. Colorado Journal of International Environmental Law and Policy 6:299

[2]

H2O. 2022. How does industrial waste get into water systems and what are its effects. www.h2o-de.com/en/blog/how-does-industrial-waste-get-into-water-systems-and-what-are-its-effects

[3]

U.S. Environmental Protection Agency. 1980. Ambient water quality criteria for pentachlorophenol. www.epa.gov/sites/default/files/2019-03/documents/ambient-wqc-pentachlorophenol-1980.pdf

[4]

Bhattacharya SK, Yuan Q, Jin P. 1996. Removal of pentachlorophenol from wastewater by combined anaerobic-aerobic treatment. Journal of Hazardous Materials 49(2–3):143−154

doi: 10.1016/0304-3894(96)01751-7
[5]

Patel UD, Suresh S. 2008. Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Separation and Purification Technology 61(2):115−122

doi: 10.1016/j.seppur.2007.10.004
[6]

Ammeri RW, Hassen W, Hidri Y, Di Rauso Simeone G, Hassen A. 2022. Macrophyte and indigenous bacterial co-remediation process for pentachlorophenol removal from wastewater. International Journal of Phytoremediation 24(3):271−282

doi: 10.1080/15226514.2021.1933897
[7]

Yang B, Xu D, Wu X, Li Z, Lei L, et al. 2015. Efficient removal of pentachlorophenol from wastewater by novel hydrophobically modified thermo-sensitive hydrogels. Journal of Industrial and Engineering Chemistry 25:67−72

doi: 10.1016/j.jiec.2014.10.014
[8]

Li H, Lin M, Xiao T, Long J, Liu F, et al. 2020. Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials 388:122016

doi: 10.1016/j.jhazmat.2020.122016
[9]

Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, et al. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production 296:126589

doi: 10.1016/j.jclepro.2021.126589
[10]

Ahmed S, Aktar S, Zaman S, Jahan RA, Bari ML. 2020. Use of natural bio-sorbent in removing dye, heavy metal and antibiotic-resistant bacteria from industrial wastewater. Applied Water Science 10:107

doi: 10.1007/s13201-020-01200-8
[11]

Mohan D, Sarswat A, Ok YS, Pittman CU. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresource Technology 160:191−202

doi: 10.1016/j.biortech.2014.01.120
[12]

Davidson J. 1995. Ecological aspects of eucalyptus plantations. Proceedings of the Regional Expert Consultation on Eucalyptus, 4−8 October 1993, Bangkok, Thailand. FAO Regional Office for Asia and the Pacific. https://www.fao.org/4/ac777e/ac777e06.htm#fn4

[13]

Perera P, Changotra R, Forren J, Green J, Hu Y, et al. 2025. Comprehensive review on flax shives – physicochemical properties and application potential. Industrial Crops and Products 225:120585

doi: 10.1016/j.indcrop.2025.120585
[14]

Singh R, Dutta RK, Naik DV, Ray A, Kanaujia PK. 2021. High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater. Environmental Challenges 5:100353

doi: 10.1016/j.envc.2021.100353
[15]

Alqadami AA, Naushad M, ALOthman ZA, Alsuhybani M, Algamdi M. 2020. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: adsorption mechanism and modeling analysis. Journal of Hazardous Materials 389:121896

doi: 10.1016/j.jhazmat.2019.121896
[16]

Kang K, Hu Y, Khan I, He S, Fatehi P. 2023. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. Bioresource Technology 390:129786

doi: 10.1016/j.biortech.2023.129786
[17]

Aghababaei A, Borugadda VB, Dalai A, Niu CH. 2023. An investigation on adsorption of carbamazepine with adsorbents developed from flax shives: kinetics, mechanisms, and desorption. Chemical Engineering Research and Design 189:138−155

doi: 10.1016/j.cherd.2022.11.008
[18]

Vievard J, Alem A, Pantet A, Ahfir ND, Devouge-Boyer C, et al. 2024. Non-competitive adsorption of polycyclic aromatic hydrocarbons and heavy metals on activated carbon produced from flax shives. Emergent Materials 8:2441−2450

doi: 10.1007/s42247-024-00806-x
[19]

ASTM. 2021. Standard test method for ash in wood. ASTM D1102-84(2021). ASTM, West Conshohocken, PA, USA. doi: 10.1520/D1102-84R21

[20]

ASTM. 2019. Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM E872-82(2019). ASTM, West Conshohocken, PA, USA. doi: 10.1520/E0872-82R19

[21]

ASTM. 2025. Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM D4442-20. ASTM, West Conshohocken, PA, USA. doi: 10.1520/D4442-20

[22]

Lilian MJ, Bissessur R, Kang K, He QS, Hu Y. 2025. Study of KOH-activated hydrochar for CO2 adsorption. Journal of Industrial and Engineering Chemistry 143:240−251

doi: 10.1016/j.jiec.2024.08.026
[23]

Wang H, Liu Y, Ifthikar J, Shi L, Khan A, et al. 2018. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: influence of atmosphere in heat treatment. Bioresource Technology 256:269−276

doi: 10.1016/j.biortech.2018.02.019
[24]

Rajput H, Lan Q, Changotra R, Rajput P, Devi P, et al. 2025. Turning waste into value: Iron-cobalt bimetallic hydrochar for efficient removal of persistent chlorinated pollutants – mechanistic insights and adsorption models. Catalysis Today 454:115293

doi: 10.1016/j.cattod.2025.115293
[25]

Rajput H, Anh KN, Changotra R, Sun X, Zhong X, et al. 2025. Sustainable removal of organic pollutants using flax shives-derived hydrochar. Biomass and Bioenergy 202:108209

doi: 10.1016/j.biombioe.2025.108209
[26]

Lang J, Matějová L, Cuentas-Gallegos AK, Lobato-Peralta DR, Ainassaari K, et al. 2021. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. Journal of Environmental Chemical Engineering 9(5):105979

doi: 10.1016/j.jece.2021.105979
[27]

Tan G, Sun W, Xu Y, Wang H, Xu N. 2016. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology 211:727−735

doi: 10.1016/j.biortech.2016.03.147
[28]

Çatlıoğlu FN, Akay S, Gözmen B, Turunc E, Anastopoulos I, et al. 2020. Fe-modified hydrochar from orange peel as adsorbent of food colorant Brilliant Black: process optimization and kinetic studies. International Journal of Environmental Science and Technology 17(4):1975−1990

doi: 10.1007/s13762-019-02593-z
[29]

Lam SS, Liew RK, Lim XY, Ani FN, Jusoh A. 2016. Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration & Biodegradation 113:325−333

doi: 10.1016/j.ibiod.2016.02.021
[30]

Hossain MD, Zhang Q, Cheng T, Goddard WA, Luo Z. 2021. Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics. Carbon 183:940−47

doi: 10.1016/j.carbon.2021.07.080
[31]

Luo X, Lei X, Cai N, Xie X, Xue Y, et al. 2016. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustainable Chemistry & Engineering 4(7):3960−3969

doi: 10.1021/acssuschemeng.6b00790
[32]

Satira A, Paone E, Bressi V, Iannazzo D, Marra F, et al. 2021. Hydrothermal carbonization as sustainable process for the complete upgrading of orange peel waste into value-added chemicals and bio-carbon materials. Applied Sciences 11(22):10983

doi: 10.3390/app112210983
[33]

Kundu S, Wang Y, Xia W, Muhler M. 2008. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. The Journal of Physical Chemistry C 112(43):16869−16878

doi: 10.1021/jp804413a
[34]

Frankcombe TJ, Liu Y. 2023. Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO. Chemistry of Materials 35(14):5468−5474

doi: 10.1021/acs.chemmater.3c00801
[35]

Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, et al. 2009. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. The Journal of Physical Chemistry C 113(32):14302−14310

doi: 10.1021/jp811320d
[36]

Zhang X, Liu S, Wang M, Ma X, Sun X, et al. 2022. Hydrochar magnetic adsorbent derived from Chinese medicine industry waste via one-step hydrothermal route: Mechanism analyses of magnetism and adsorption. Fuel 326:125110

doi: 10.1016/j.fuel.2022.125110
[37]

Yi Y, Huang Z, Lu B, Xian J, Tsang EP, et al. 2020. Magnetic biochar for environmental remediation: a review. Bioresource Technology 298:122468

doi: 10.1016/j.biortech.2019.122468
[38]

Liu R, Zhang Y, Hu B, Wang H. 2022. Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: efficiencies and mechanisms. Chemosphere 287:132087

doi: 10.1016/j.chemosphere.2021.132087
[39]

Davies G, McGregor J. 2021. Hydrothermal synthesis of biomass-derived magnetic carbon composites for adsorption and catalysis. ACS Omega 6(48):33000−33009

doi: 10.1021/acsomega.1c05116
[40]

Guo S, Gao Y, Wang Y, Liu Z, Wei X, et al. 2019. Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal. Environmental Science and Pollution Research International 26(29):30365−30373

doi: 10.1007/s11356-019-06194-8
[41]

Pal N. 2020. Nanoporous metal oxide composite materials: a journey from the past, present to future. Advances in Colloid and Interface Science 280:102156

doi: 10.1016/j.cis.2020.102156
[42]

Li Y, Hagos FM, Chen R, Qian H, Mo C, et al. 2021. Rice husk hydrochars from metal chloride-assisted hydrothermal carbonization as biosorbents of organics from aqueous solution. Bioresources and Bioprocessing 8:99

doi: 10.1186/s40643-021-00451-w
[43]

Wang F, Guo C, Liu X, Sun H, Zhang C, et al. 2022. Revealing carbon-iron interaction characteristics in sludge-derived hydrochars under different hydrothermal conditions. Chemosphere 300:134572

doi: 10.1016/j.chemosphere.2022.134572
[44]

Xu Z, Zhou Y, Sun Z, Zhang D, Huang Y, et al. 2020. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon. Chemosphere 241:125120

doi: 10.1016/j.chemosphere.2019.125120
[45]

Mane PV, Rego RM, Yap PL, Losic D, Kurkuri MD. 2024. Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. Progress in Materials Science 146:101314

doi: 10.1016/j.pmatsci.2024.101314
[46]

Chen D, Cen K, Zhuang X, Gan Z, Zhou J, et al. 2022. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame 242:112142

doi: 10.1016/j.combustflame.2022.112142
[47]

Wang F, Liu X, Guo C, Lian F, Li Z, et al. 2024. A novel cobalt-iron bimetallic hydrochar for the degradation of triclosan in the aqueous solution: performance, reusability, and synergistic degradation mechanism. Environmental Pollution 358:124487

doi: 10.1016/j.envpol.2024.124487
[48]

Mondal P, Majumder CB, Mohanty B. 2008. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials 150(3):695−702

doi: 10.1016/j.jhazmat.2007.05.040
[49]

Sun Y, Wang T, Han C, Bai L, Sun X. 2023. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. Bioresource Technology 369:128373

doi: 10.1016/j.biortech.2022.128373
[50]

Zenasni MA, Benfarhi S, Merlin A, Molina S, George B, et al. 2012. Adsorption of Cu(II) on maghnite from aqueous solution: effects of pH, initial concentration, interaction time and temperature. Natural Science 4(11):856−868

doi: 10.4236/ns.2012.411114
[51]

Chien SC, Chen SH, Li CJ. 2018. Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol. Environmental Science and Pollution Research 25(6):5269−5279

doi: 10.1007/s11356-017-9822-7
[52]

Peng P, Lang YH, Wang XM. 2016. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecological Engineering 90:225−233

doi: 10.1016/j.ecoleng.2016.01.039
[53]

Mathialagan T, Viraraghavan T. 2009. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technology 100(2):549−558

doi: 10.1016/j.biortech.2008.06.054
[54]

Zhou L, Pan S, Chen X, Zhao Y, Zou B, et al. 2014. Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2–MWCNTs core–shell magnetic microspheres. Chemical Engineering Journal 257:10−19

doi: 10.1016/j.cej.2014.07.060
[55]

Rasouli Sadabad H, Coleman HM, Dooley JSG, Snelling WJ, O'Hagan B, et al. 2024. Desorption of antibiotics from granular activated carbon during water treatment by adsorption. Environmental Processes 11(4):64

doi: 10.1007/s40710-024-00740-4
[56]

Widiartyasari Prihatdini R, Suratman A, Siswanta D. 2023. Linear and nonlinear modeling of kinetics and isotherm of malachite green dye adsorption to trimellitic-modified pineapple peel. Materials Today: Proceedings 88:33−40

doi: 10.1016/j.matpr.2023.07.108
[57]

Rao MA, Di Rauso Simeone G, Scelza R, Conte P. 2017. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chemosphere 186:193−201

doi: 10.1016/j.chemosphere.2017.07.125
[58]

Anwar Mohamad Said K, Zakirah Ismail N, Liyana Jama'in R, Ain Mohamed Alipah N, Mohamed Sutan N, et al. 2018. Application of freundlich and temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. International Journal of Engineering & Technology 7:91

doi: 10.14419/ijet.v7i3.18.16683
[59]

Abdel Salam M, Burk RC. 2010. Thermodynamics and kinetics studies of pentachlorophenol adsorption from aqueous solutions by multi-walled carbon nanotubes. Water, Air, & Soil Pollution 210:101−111

doi: 10.1007/s11270-009-0227-1
[60]

Kuśmierek K, Dąbek L, Świątkowski A. 2018. Adsorptive removal of pentachlorophenol from water using agricultural and industrial wastes. Desalination and Water Treatment 117:142−148

doi: 10.5004/dwt.2018.22178
[61]

El Messaoudi N, El Khomri M, El Mouden A, Bouich A, Jada A, et al. 2024. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review. Biomass Conversion and Biorefinery 14(11):11739−11756

doi: 10.1007/s13399-022-03604-9
[62]

Bakker ES, Van Donk E, Immers AK. 2016. Lake restoration by in-lake iron addition: a synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquatic Ecology 50:121−135

doi: 10.1007/s10452-015-9552-1
[63]

Meng H, Chen Z, Wei W, Xu J, Duan H, et al. 2025. Magnetic hydrochar for sustainable wastewater management. NPJ Materials Sustainability 3:7

doi: 10.1038/s44296-024-00047-3