[1]

Jeewani PH, Brown RW, Rhymes JM, Mcnamara NP, Chadwick DR, et al. 2025. Greenhouse gas removal in agricultural peatland via raised water levels and soil amendment. Biochar 7(1):39

doi: 10.1007/s42773-024-00422-2
[2]

Desjardins SM, Ter-Mikaelian MT, Chen J. 2024. Cradle-to-gate life cycle analysis of slow pyrolysis biochar from forest harvest residues in Ontario, Canada. Biochar 6(1):58

doi: 10.1007/s42773-024-00352-z
[3]

Mehta D. 2024. Towards carbon neutrality: asymmetric impact of financial development and digitalization on carbon dioxide emissions in Mediterranean countries. Carbon Research 3:76

doi: 10.1007/s44246-024-00161-w
[4]

Matenda FR, Raihan A, Zhou H, Sibanda M. 2024. The influence of economic growth, fossil and renewable energy, technological innovation, and globalisation on carbon dioxide emissions in South Africa. Carbon Research 3:69

doi: 10.1007/s44246-024-00155-8
[5]

Nwaoha C, Odoh K, Ikpatt E, Orji R, Idem R. 2017. Process simulation, parametric sensitivity analysis and ANFIS modeling of CO2 capture from natural gas using aqueous MDEA–PZ blend solution. Journal of Environmental Chemical Engineering 5(6):5588−5598

doi: 10.1016/j.jece.2017.10.038
[6]

Zhan L, Lu W, Xiang Q, Chen Z, Luo W, et al. 2025. Construction of low-energy regenerative bagasse-based carbon capture material for high efficiency CO2 capture. Journal of Colloid and Interface Science 687:261−270

doi: 10.1016/j.jcis.2025.02.070
[7]

Lee Y, Kim YT, Kwon EE, Lee J. 2020. Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan. Environmental Research 184:109325

doi: 10.1016/j.envres.2020.109325
[8]

Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, et al. 2022. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67(2):150−200

doi: 10.1080/09506608.2021.1922047
[9]

Ma J, Li L, Wang H, Du Y, Ma J, et al. 2022. Carbon capture and storage: history and the road ahead. Engineering 14:33−43

doi: 10.1016/j.eng.2021.11.024
[10]

Dissanayake PD, You S, Igalavithana AD, Xia Y, Bhatnagar A, et al. 2020. Biochar-based adsorbents for carbon dioxide capture: a critical review. Renewable and Sustainable Energy Reviews 119:109582

doi: 10.1016/j.rser.2019.109582
[11]

Zhang G, Zhang L, Shi Z, Yang Y, Liu J. 2025. Microbial nutrient limitation and carbon use efficiency in saline-alkali soil amended with biochar: insights from ecoenzymatic C : N : P stoichiometry. Biochar 7(1):68

doi: 10.1007/s42773-025-00458-y
[12]

Ngaba MJY, Yemele OM, Hu B, Rennenberg H. 2025. Biochar application as a green clean-up method: bibliometric analysis of current trends and future perspectives. Biochar 7(1):83

doi: 10.1007/s42773-025-00470-2
[13]

Wu C, Wang Y, Clarke JL, Su H, Wang L, et al. 2025. Biochar enhances the sorption and degradation of fluridone and its main metabolite in soil: insights into biodegradation potential and remediation of microbial communities. Biochar 7(1):81

doi: 10.1007/s42773-025-00469-9
[14]

Salinas-Farran L, Mosonik MC, Jervis R, Marathe S, Rau C, et al. 2024. Tracked evolution of single biochar particle's morphology during pyrolysis in operando X-ray micro-computed tomography. Biochar 6(1):86

doi: 10.1007/s42773-024-00374-7
[15]

Yu Q, Zhang X, Gao T, Gong X, Wu J, et al. 2024. Converting plastic-contaminated agricultural residues into fit-for-purpose biochar soil amendment: an initial study. Biochar 6(1):98

doi: 10.1007/s42773-024-00382-7
[16]

Wang T, Liu H, Toan S, Sun Z, Sun Z. 2024. Deoxygenated pyrolysis-gasification of biomass for intensified bio-oil and syngas co-production with tar abatement. Fuel 371:131883

doi: 10.1016/j.fuel.2024.131883
[17]

Chowdhury P, Chowdhury T, Chowdhury H, Bontempi E. 2025. Food waste to biochar; a potential sustainable solution for Australia: a comprehensive review. Carbon Research 4:41

doi: 10.1007/s44246-025-00207-7
[18]

Qiao Y, Wu C. 2022. Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology 2:100018

doi: 10.1016/j.ccst.2021.100018
[19]

Zhang Y, Chen P, Liu S, Peng P, Min M, et al. 2017. Effects of feedstock characteristics on microwave-assisted pyrolysis–a review. Bioresource Technology 230:143−151

doi: 10.1016/j.biortech.2017.01.046
[20]

Qiu T, Liu C, Cui L, Liu H, Muhammad K, et al. 2023. Comparison of corn straw biochars from electrical pyrolysis and microwave pyrolysis. Energy Sources Part A: Recovery Utilization and Environmental Effects 45(1):636−649

doi: 10.1080/15567036.2023.2172484
[21]

Huang YF, Chiueh PT, Shih CH, Lo SL, Sun L, et al. 2015. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75−82

doi: 10.1016/j.energy.2015.02.026
[22]

Premchand P, Demichelis F, Galletti C, Chiaramonti D, Bensaid S, et al. 2024. Enhancing biochar production: a technical analysis of the combined influence of chemical activation (KOH and NaOH) and pyrolysis atmospheres (N2/CO2) on yields and properties of rice husk-derived biochar. Journal of Environmental Management 370:123034

doi: 10.1016/j.jenvman.2024.123034
[23]

Li D, Sun L, He R, Xiao G, Zhu D, et al. 2024. Hierarchically porous MgO/biochar composites for efficient CO2 capture: structure, performance and mechanism. Chemical Engineering Journal 498:155607

doi: 10.1016/j.cej.2024.155607
[24]

Zhang J, Zhang X, Li X, Song Z, Shao J, et al. 2024. Prediction of CO2 adsorption of biochar under KOH activation via machine learning. Carbon Capture Science & Technology 13:100309

doi: 10.1016/j.ccst.2024.100309
[25]

Guo T, Zhang Y, Geng Y, Chen J, Zhu Z, et al. 2023. Surface oxidation modification of nitrogen doping biochar for enhancing CO2 adsorption. Industrial Crops and Products 206:117582

doi: 10.1016/j.indcrop.2023.117582
[26]

Xie WH, Yao X, Li H, Li HR, He LN. 2022. Biomass-based N-rich porous carbon materials for CO2 capture and in-situ conversion. ChemSusChem 15(18):e202201004

doi: 10.1002/cssc.202201004
[27]

Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, et al. 2009. Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresource Technology 100(5):1720−1726

doi: 10.1016/j.biortech.2008.09.039
[28]

Pang B, Zheng H, Jin Z, Hou D, Zhang Y, et al. 2024. Inner superhydrophobic materials based on waste fly ash: microstructural morphology of microetching effects. Composites Part B: Engineering 268:111089

doi: 10.1016/j.compositesb.2023.111089
[29]

Zhang J, Shao J, Jin Q, Zhang X, Yang H, et al. 2020. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Science of the Total Environment 716:137016

doi: 10.1016/j.scitotenv.2020.137016
[30]

Rehman A, Heo YJ, Nazir G, Park SJ. 2021. Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption. Carbon 172:71−82

doi: 10.1016/j.carbon.2020.09.088
[31]

Potnuri R, Surya DV, Rao CS, Yadav A, Sridevi V, et al. 2023. A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass. Journal of Analytical and Applied Pyrolysis 173:106094

doi: 10.1016/j.jaap.2023.106094
[32]

Shoaib AGM, Yılmaz M, El Sikaily A, Hassaan MA, El-Nemr MA, et al. 2025. Isotherm, kinetics and ANN analysis of methylene blue adsorption onto nitrogen doped Ulva lactuca Biochar. Scientific Reports 15(1):10642

doi: 10.1038/s41598-025-92973-y
[33]

Chen Y, Zhou C, Xing X, Chen L, Yao B, et al. 2024. Interconnected pyrolysis and activation with in-situ H3PO4 activation of biochar from pear wood chips in a pilot scale dual fluidized bed. Chemical Engineering Journal 495:153579

doi: 10.1016/j.cej.2024.153579
[34]

Huang Q, Karthik H, Patra BR, Pattnaik F, Dalai AK. 2025. Preparation of an adsorbent derived from canola hull by slow pyrolysis for effective carbon dioxide adsorption. Canadian Journal of Chemistry 103(6):293−306

doi: 10.1139/cjc-2024-0150
[35]

Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, et al. 2019. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports 7:100266

doi: 10.1016/j.biteb.2019.100266
[36]

Khandaker T, Hossain MS, Dhar PK, Rahman MS, Hossain MA, et al. 2020. Efficacies of carbon-based adsorbents for carbon dioxide capture. Processes 8(6):654

doi: 10.3390/pr8060654
[37]

Liang W, Ma C, Zhu Y, Liu J. 2025. Performance and mechanism of modified red mud for the toluene adsorption. Journal of Environmental Chemical Engineering 13(2):115587

doi: 10.1016/j.jece.2025.115587
[38]

Liang W, Zhang Y, Yang L, Liu J. 2025. Adsorption performance of amine-functionalized red mud-based adsorbent for CO2 capture. Journal of Environmental Management 383:125334

doi: 10.1016/j.jenvman.2025.125334
[39]

Zuhara S, McKay G. 2025. Single and binary pollutant adsorption of strontium and barium on waste-derived activated carbons: modelling, regeneration and mechanistic insights. Environmental Technology & Innovation 39:104220

doi: 10.1016/j.eti.2025.104220
[40]

Lo CY, Hanh NTD, Srinophakun P, Prapainainar P, Chiu CY, et al. 2025. Development and characterization of dual functional weak-strong acidic ion exchange nanofiber membranes for efficient lysozyme adsorption in batch mode. Food Chemistry 487:144750

doi: 10.1016/j.foodchem.2025.144750
[41]

He N, Hu D, Xie H, Wu Z, Wang Z, et al. 2025. Sustainable production of sawdust-derived porous carbon: distinguished roles of phosphates and polyphosphates on pore evolution and tetracycline hydrochloride purification. Separation and Purification Technology 363(1):132101

doi: 10.1016/j.seppur.2025.132101
[42]

Zhang T, Xiong Z, Zhao Y, Zhang J. 2025. Comparative study on the adsorption performance of CO2 and Hg in flue gas using corn straw and pine biochar modified by KOH. Separation and Purification Technology 359(2):130757

doi: 10.1016/j.seppur.2024.130757
[43]

Wang H, Wang X, Teng H, Xu J, Sheng L. 2022. Purification mechanism of city tail water by constructed wetland substrate with NaOH-modified corn straw biochar. Ecotoxicology and Environmental Safety 238:113597

doi: 10.1016/j.ecoenv.2022.113597
[44]

Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, et al. 2020. Effect of pyrolysis temperature on PhysicoChemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research 8:85

doi: 10.3389/fenrg.2020.00085
[45]

Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M. 2020. Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environmental Science and Pollution Research 27(11):11809−11829

doi: 10.1007/s11356-020-07734-3
[46]

Wang S, Lee YR, Won Y, Kim H, Jeong SE, et al. 2022. Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption. Chemical Engineering Journal 437(1):135378

doi: 10.1016/j.cej.2022.135378
[47]

Wang H, Wang H, Liu G, Yan Q. 2021. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N. Science of The Total Environment 771:145424

doi: 10.1016/j.scitotenv.2021.145424
[48]

Guo X, Zhang G, Wu C, Liu J, Li G, et al. 2021. A cost-effective synthesis of heteroatom-doped porous carbon by sulfur-containing waste liquid treatment: as a promising adsorbent for CO2 capture. Journal of Environmental Chemical Engineering 9(1):105165

doi: 10.1016/j.jece.2021.105165
[49]

Hsu CJ, Kuo IL, Hsi HC, Lam SS, Huang YP, et al. 2025. Single-step pyrolytic synthesis of ultra-microporous ammonialized biochar for carbon dioxide capture. Journal of Environmental Management 381:125197

doi: 10.1016/j.jenvman.2025.125197