[1]

Aghaali Z, Naghavi MR. 2024. Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: a review. BMC Plant Biology 24:700

doi: 10.1186/s12870-024-05412-x
[2]

Hong UVT, Tamiru-Oli M, Hurgobin B, Lewsey MG. 2025. Genomic and cell-specific regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy. Journal of Experimental Botany 76:35−51

doi: 10.1093/jxb/erae317
[3]

He SM, Liang YL, Cong K, Chen G, Zhao X, et al. 2018. Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in Coptis species. Frontiers in Plant Science 9:731

doi: 10.3389/fpls.2018.00731
[4]

Ziegler J, Facchini PJ. 2008. Alkaloid biosynthesis: metabolism and trafficking. Annual Review of Plant Biology 59:735−69

doi: 10.1146/annurev.arplant.59.032607.092730
[5]

Sato F. 2013. Characterization of plant functions using cultured plant cells, and biotechnological applications. Bioscience, Biotechnology, and Biochemistry 77:1−9

doi: 10.1271/bbb.120759
[6]

Takanashi K, Yamada Y, Sasaki T, Yamamoto Y, Sato F, et al. 2017. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica. Phytochemistry 138:76−82

doi: 10.1016/j.phytochem.2017.03.003
[7]

Wang J, Wang L, Lou GH, Zeng HR, Hu J, et al. 2019. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharmaceutical Biology 57:193−225

doi: 10.1080/13880209.2019.1577466
[8]

Aghaali Z, Naghavi MR, Zargar M. 2024. Promising approaches for simultaneous enhancement of medicinally significant benzylisoquinoline alkaloids in opium poppy. Frontiers in Plant Science 15:1377318

doi: 10.3389/fpls.2024.1377318
[9]

Yamada Y, Hirakawa H, Hori K, Minakuchi Y, Toyoda A, et al. 2021. Comparative analysis using the draft genome sequence of California poppy (Eschscholzia californica) for exploring the candidate genes involved in benzylisoquinoline alkaloid biosynthesis. Bioscience, Biotechnology, and Biochemistry 85:851−59

doi: 10.1093/bbb/zbaa091
[10]

Xu Z, Tian Y, Wang J, Ma Y, Li Q, et al. 2024. Convergent evolution of berberine biosynthesis. Science Advances 10:eads3596

doi: 10.1126/sciadv.ads3596
[11]

Xu T, Kuang T, Du H, Li Q, Feng T, et al. 2020. Magnoflorine: a review of its pharmacology, pharmacokinetics and toxicity. Pharmacological Research 152:104632

doi: 10.1016/j.phrs.2020.104632
[12]

Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. 2022. Jatrorrhizine: A review of sources, pharmacology, pharmacokinetics and toxicity. Frontiers in Pharmacology 12:783127

doi: 10.3389/fphar.2021.783127
[13]

Roth L, Adler M, Jain T, Bempong D. 2018. Monographs for medicines on WHO's model list of essential medicines. Bulletin of the World Health Organization 96:378−85

doi: 10.2471/BLT.17.205807
[14]

Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, et al. 2019. Noscapine, a non-addictive opioid and microtubule-inhibitor in potential treatment of glioblastoma. Neurochemical Research 44:1796−806

doi: 10.1007/s11064-019-02837-x
[15]

Ashrafi S, Alam S, Sultana A, Raj A, Emon NU, et al. 2023. Papaverine: a miraculous alkaloid from opium and its multimedicinal application. Molecules 28:3149

doi: 10.3390/molecules28073149
[16]

Becker A, Yamada Y, Sato F. 2023. California poppy (Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. Frontiers in Plant Science 14:1084358

doi: 10.3389/fpls.2023.1084358
[17]

Malla RR, Bhamidipati P, Adem M. 2023. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochemical Pharmacology 212:115565

doi: 10.1016/j.bcp.2023.115565
[18]

Kosina P, Walterová D, Ulrichová J, Lichnovský V, Stiborová M, et al. 2004. Sanguinarine and chelerythrine: assessment of safety on pigs in ninety days feeding experiment. Food and Chemical Toxicology 42:85−91

doi: 10.1016/j.fct.2003.08.007
[19]

Stöckigt J, Antonchick AP, Wu F, Waldmann H. 2011. The pictet-spengler reaction in nature and in organic chemistry. Angewandte Chemie International Edition 50:8538−64

doi: 10.1002/anie.201008071
[20]

Ruiz-Olalla A, Würdemann MA, Wanner MJ, Ingemann S, van Maarseveen JH, et al. 2015. Organocatalytic enantioselective Pictet-Spengler approach to biologically relevant 1-benzyl-1,2,3,4-tetrahydroisoquinoline alkaloids. Journal of Organic Chemistry 80:5125−32

doi: 10.1021/acs.joc.5b00509
[21]

Min X, Zhu T, Hu X, Hou C, He J, et al. 2023. Transcriptome and metabolome analysis of isoquinoline alkaloid biosynthesis of Coptis chinensis in different years. Genes 14:2232

doi: 10.3390/genes14122232
[22]

Liu Y, Wang B, Shu S, Li Z, Song C, et al. 2021. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nature Communications 12:3276

doi: 10.1038/s41467-021-23611-0
[23]

Hori K, Yamada Y, Purwanto R, Minakuchi Y, Toyoda A, et al. 2018. Mining of the uncharacterized cytochrome P450 genes involved in alkaloid biosynthesis in California poppy using a draft genome sequence. Plant & Cell Physiology 59:222−33

doi: 10.1093/pcp/pcx210
[24]

Zhong F, Huang L, Qi L, Ma Y, Yan Z. 2020. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Molecular Biology 102:477−99

doi: 10.1007/s11103-019-00959-y
[25]

Xu T, Yang X, Jia Y, Li Z, Tang G, et al. 2022. A global survey of the transcriptome of the opium poppy (Papaver somniferum) based on single-molecule long-read isoform sequencing. The Plant Journal 110:607−20

doi: 10.1111/tpj.15689
[26]

Li Q, Ramasamy S, Singh P, Hagel JM, Dunemann SM, et al. 2020. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nature Communications 11:1190

doi: 10.1038/s41467-020-15040-2
[27]

Sunhe YX, Zhang YH, Fu RJ, Xu DQ, Tang YP. 2024. Neuroprotective effect and preparation methods of berberine. Frontiers in Pharmacology 15:1429050

doi: 10.3389/fphar.2024.1429050
[28]

Shakeri F, Kiani S, Rahimi G, Boskabady MH. 2024. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytotherapy Research 38:1882−902

doi: 10.1002/ptr.8077
[29]

Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. 2024. A mechanistic review on how berberine use combats diabetes and related complications: molecular, cellular, and metabolic effects. Pharmaceuticals 17:7

doi: 10.3390/ph17010007
[30]

Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. 2024. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytotherapy Research 38:349−67

doi: 10.1002/ptr.8040
[31]

Lu Q, Tang Y, Luo S, Gong Q, Li C. 2023. Coptisine, the characteristic constituent from Coptis chinensis, exhibits significant therapeutic potential in treating cancers, metabolic and inflammatory diseases. The American Journal of Chinese Medicine 51:2121−56

doi: 10.1142/S0192415X2350091X
[32]

Liu L, Li J, He Y. 2020. Multifunctional epiberberine mediates multi-therapeutic effects. Fitoterapia 147:104771

doi: 10.1016/j.fitote.2020.104771
[33]

Lei C, Yao Y, Shen B, Liu J, Pan Q, et al. 2019. Columbamine suppresses the proliferation and malignization of colon cancer cells via abolishing Wnt/β-catenin signaling pathway. Cancer Management and Research 11:8635−45

doi: 10.2147/CMAR.S209861
[34]

Wang Y, Han Y, Chai F, Xiang H, Huang T, et al. 2016. The antihypercholesterolemic effect of columbamine from Rhizoma Coptidis in HFHC-diet induced hamsters through HNF-4α/FTF-mediated CYP7A1 activation. Fitoterapia 115:111−21

doi: 10.1016/j.fitote.2016.09.019
[35]

Tarabasz D, Kukula-Koch W. 2020. Palmatine: a review of pharmacological properties and pharmacokinetics. Phytotherapy Research 34:33−50

doi: 10.1002/ptr.6504
[36]

Badshah I, Anwar M, Murtaza B, Khan MI. 2024. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Molecular and Cellular Biochemistry 479:1457−85

doi: 10.1007/s11010-023-04810-3
[37]

Singh A, Menéndez-Perdomo IM, Facchini PJ. 2019. Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochemistry Reviews 18:1457−82

doi: 10.1007/s11101-019-09644-w
[38]

Rajecky M, Slaninova I, Mokrisova P, Urbanova J, Palkovsky M, et al. 2013. Alkaloid chelirubine and DNA: blue and red luminescence. Talanta 105:317−9

doi: 10.1016/j.talanta.2012.10.045
[39]

Balažová A, Urdová J, Forman V, Mučaji P. 2020. Enhancement of macarpine production in Eschscholzia Californica suspension cultures under salicylic acid elicitation and precursor supplementation. Molecules 25:1261

doi: 10.3390/molecules25061261
[40]

Jiao X, Fu X, Li Q, Bu J, Liu X, et al. 2024. De novo production of protoberberine and benzophenanthridine alkaloids through metabolic engineering of yeast. Nature Communications 15:8759

doi: 10.1038/s41467-024-53045-3
[41]

Kaserer T, Steinacher T, Kainhofer R, Erli F, Sturm S, et al. 2020. Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Scientific Reports 10:13804

doi: 10.1038/s41598-020-70493-1
[42]

Li Y, Zeng RJ, Chen JZ, Wu YB, Chou GX, et al. 2015. Pharmacokinetics and metabolism study of isoboldine, a major bioactive component from Radix Linderae in male rats by UPLC-MS/MS. Journal of Ethnopharmacology 171:154−60

doi: 10.1016/j.jep.2015.05.042
[43]

De Sousa JPM, Oliveira NCSA, Fernandes PA. 2023. Rational engineering of (S)-norcoclaurine synthase for efficient benzylisoquinoline alkaloids biosynthesis. Molecules 28:4265

doi: 10.3390/molecules28114265
[44]

Yang M, Zhu L, Li L, Li J, Xu L, et al. 2017. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in Lotus (Nelumbo nucifera). Frontiers in Plant Science 8:80

doi: 10.3389/fpls.2017.00080
[45]

Tjallinks G, Mattevi A, Fraaije MW. 2024. Biosynthetic strategies of berberine bridge enzyme-like flavoprotein oxidases toward structural diversification in natural product biosynthesis. Biochemistry 63:2089−110

doi: 10.1021/acs.biochem.4c00320
[46]

Dang TT, Facchini PJ. 2012. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiology 159:618−31

doi: 10.1104/pp.112.194886
[47]

Dang TT, Facchini PJ. 2014. Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Letters 588:198−204

doi: 10.1016/j.febslet.2013.11.037
[48]

Okada N, Koizumi N, Tanaka T, Ohkubo H, Nakanishi S, Yamada Y. 1989. Isolation, sequence, and bacterial expression of a cDNA for (S)-tetrahydroberberine oxidase from cultured berberine-producing Coptis japonica cells. Proceedings of the National Academy of Sciences of the United States of America 86:534−38

doi: 10.1073/pnas.86.2.534
[49]

Tu TQ, Do PT, Van Nguyen D, Pham NTT, Nguyen TT, et al. 2022. The columbamine O-methyltransferase gene (CoOMT) is capable of increasing alkaloid content in transgenic tobacco plants. Molecular Biology Reports 49:2667−75

doi: 10.1007/s11033-021-07074-6
[50]

Takemura T, Ikezawa N, Iwasa K, Sato F. 2013. Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells. Phytochemistry 91:100−8

doi: 10.1016/j.phytochem.2012.02.013
[51]

Beaudoin GAW, Facchini PJ. 2014. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240:19−32

doi: 10.1007/s00425-014-2056-8
[52]

Vadhel A, Bashir S, Mir AH, Girdhar M, Kumar D, et al. 2023. Opium alkaloids, biosynthesis, pharmacology and association with cancer occurrence. Open Biology 13:220355

doi: 10.1098/rsob.220355
[53]

Pathak S, Lakhwani D, Gupta P, Mishra BK, Shukla S, et al. 2013. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PLoS One 8:e65622

doi: 10.1371/journal.pone.0065622
[54]

Desgagné-Penix I, Facchini PJ. 2012. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. The Plant Journal 72:331−44

doi: 10.1111/j.1365-313X.2012.05084.x
[55]

Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM. 2003. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum − cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. The Plant Journal 36:808−19

doi: 10.1046/j.1365-313X.2003.01928.x
[56]

Hagel JM, Beaudoin GAW, Fossati E, Ekins A, Martin VJJ, et al. 2012. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. Journal of Biological Chemistry 287:42972−83

doi: 10.1074/jbc.M112.420414
[57]

Liscombe DK, Facchini PJ. 2007. Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. Journal of Biological Chemistry 282:14741−51

doi: 10.1074/jbc.M611908200
[58]

Beaudoin GAW, Facchini PJ. 2013. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochemical and Biophysical Research Communications 431:597−603

doi: 10.1016/j.bbrc.2012.12.129
[59]

Hirata K, Poeaknapo C, Schmidt J, Zenk MH. 2004. 1, 2-Dehydroreticuline synthase, the branch point enzyme opening the morphinan biosynthetic pathway. Phytochemistry 65:1039−46

doi: 10.1016/j.phytochem.2004.02.015
[60]

De-Eknamkul W, Zenk MH. 1992. Purification and properties of 1, 2-dehydroreticuline reductase from Papaver somniferum seedlings. Phytochemistry 31:813−21

doi: 10.1016/0031-9422(92)80020-F
[61]

Higashi Y, Kutchan TM, Smith TJ. 2011. Atomic structure of salutaridine reductase from the opium poppy (Papaver somniferum). Journal of Biological Chemistry 286:6532−41

doi: 10.1074/jbc.M110.168633
[62]

Gesell A, Rolf M, Ziegler J, Díaz Chávez ML, Huang FC, et al. 2009. CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. The Journal of Biological Chemistry 284:24432−42

doi: 10.1074/jbc.M109.033373
[63]

Grothe T, Lenz R, Kutchan TM. 2001. Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. Journal of Biological Chemistry 276:30717−23

doi: 10.1074/jbc.M102688200
[64]

Carr SC, Torres MA, Morris JS, Facchini PJ, Ng KKS. 2021. Structural studies of codeinone reductase reveal novel insights into aldo-keto reductase function in benzylisoquinoline alkaloid biosynthesis. Journal of Biological Chemistry 297:101211

doi: 10.1016/j.jbc.2021.101211
[65]

Singh W, Hui C, Li C, Huang M. 2021. Thebaine is selectively demethylated by thebaine 6-O-demethylase and codeine-3-O-demethylase at distinct binding sites: a computational study. Inorganic Chemistry 60:10199−214

doi: 10.1021/acs.inorgchem.1c00468
[66]

Purwanto R, Hori K, Yamada Y, Sato F. 2017. Unraveling additional O-methylation steps in benzylisoquinoline alkaloid biosynthesis in California poppy (Eschscholzia californica). Plant and Cell Physiology 58:1528−40

doi: 10.1093/pcp/pcx093
[67]

Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, et al. 2023. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell, Tissue and Organ Culture 153:447−58

doi: 10.1007/s11240-023-02485-8
[68]

Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. 2023. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. Frontiers in Plant Science 14:1250020

doi: 10.3389/fpls.2023.1250020
[69]

Lala S. 2021. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnology 15:28−57

doi: 10.1049/nbt2.12005
[70]

De Geyter N, Gholami A, Goormachtig S, Goossens A. 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science 17:349−59

doi: 10.1016/j.tplants.2012.03.001
[71]

Hara M, Morio K, Yazaki K, Tanaka S, Tabata M. 1995. Separation and characterization of cytokinin-inducible (S)-tetrahydroberberine oxidases controlling berberine biosynthesis in Thalictrum minus cell cultures. Phytochemistry 38:89−93

doi: 10.1016/0031-9422(94)00623-2
[72]

Hara M, Tanaka S, Tabata M. 1994. Induction of a specific methyltransferase activity regulating berberine biosynthesis by cytokinin in Thalictrum minus cell cultures. Phytochemistry 36:327−32

doi: 10.1016/S0031-9422(00)97070-5
[73]

Kobayashi Y, Hara M, Fukui H, Tabata M. 1991. The role of ethylene in berberine production by Thalictrum minus cell suspension cultures. Phytochemistry 30:3605−09

doi: 10.1016/0031-9422(91)80075-C
[74]

Roos W, Viehweger K, Dordschbal B, Schumann B, Evers S, et al. 2006. Intracellular pH signals in the induction of secondary pathways – The case of Eschscholzia californica. Journal of Plant Physiology 163:369−81

doi: 10.1016/j.jplph.2005.11.012
[75]

Heinze M, Steighardt J, Gesell A, Schwartze W, Roos W. 2007. Regulatory interaction of the Galpha protein with phospholipase A2 in the plasma membrane of Eschscholzia californica. The Plant Journal 52:1041−51

doi: 10.1111/j.1365-313X.2007.03300.x
[76]

Färber K, Schumann B, Miersch O, Roos W. 2003. Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry 62:491−500

doi: 10.1016/S0031-9422(02)00562-9
[77]

Facchini PJ, Johnson AG, Poupart J, de Luca V. 1996. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiology 111:687−97

doi: 10.1104/pp.111.3.687
[78]

Pandey SS, Singh S, Vivek Babu CS, Shanker K, Srivastava NK, et al. 2016. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243:1097−114

doi: 10.1007/s00425-016-2467-9
[79]

Ray T, Pandey SS, Pandey A, Srivastava M, Shanker K, et al. 2019. Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Frontiers in Microbiology 10:925

doi: 10.3389/fmicb.2019.00925
[80]

Gurkok T, Turktas M, Parmaksiz I, Unver T. 2015. Transcriptome profiling of alkaloid biosynthesis in elicitor induced opium poppy. Plant Molecular Biology Reporter 33:673−88

doi: 10.1007/s11105-014-0772-7
[81]

Jablonická V, Ziegler J, Vatehová Z, Lišková D, Heilmann I, et al. 2018. Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L. Journal of Plant Physiology 223:1−8

doi: 10.1016/j.jplph.2018.01.007
[82]

Mishra S, Triptahi V, Singh S, Phukan UJ, Gupta MM, et al. 2013. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum. PLoS One 8:e52784

doi: 10.1371/journal.pone.0052784
[83]

Müller H, Heinze M, Heinke R, Schmidt J, Roos W. 2014. Self-regulation of phytoalexin production: a non-biosynthetic enzyme controls alkaloid biosynthesis in cultured cells of Eschscholzia californica. Plant Cell, Tissue and Organ Culture 119:661−76

doi: 10.1007/s11240-014-0565-6
[84]

Heinze M, Brandt W, Marillonnet S, Roos W. 2015. "Self" and "non-self" in the control of phytoalexin biosynthesis: Plant phospholipases A2 with alkaloid-specific molecular fingerprints. The Plant Cell 27:448−62

doi: 10.1105/tpc.114.135343
[85]

Gundlach H, Müller MJ, Kutchan TM, Zenk MH. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences of the United States of America 89:2389−93

doi: 10.1073/pnas.89.6.2389
[86]

Cho HY, Lee-Parsons CWT, Yoon SH, Rhee HS, Park JM. 2007. Enhanced benzophenanthridine alkaloid production and protein expression with combined elicitor in Eschscholtzia californica suspension cultures. Biotechnology Letters 29:2001−5

doi: 10.1007/s10529-007-9469-4
[87]

Heinze M, Roos W. 2013. Assay of phospholipase A activity. Methods in Molecular Biology 1009:241−49

doi: 10.1007/978-1-62703-401-2_22
[88]

Heinze M, Herre M, Massalski C, Hermann I, Conrad U, et al. 2013. Signal transfer in the plant plasma membrane: phospholipase A2 is regulated via an inhibitory Gα protein and a cyclophilin. Biochemical Journal 450:497−509

doi: 10.1042/BJ20120793
[89]

Viehweger K, Dordschbal B, Roos W. 2002. Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. The Plant Cell 14:1509−25

doi: 10.1105/tpc.002329
[90]

Angelova S, Buchheim M, Frowitter D, Schierhorn A, Roos W. 2010. Overproduction of alkaloid phytoalexins in California poppy cells is associated with the co-expression of biosynthetic and stress-protective enzymes. Molecular Plant 3:927−39

doi: 10.1093/mp/ssq043
[91]

Viehweger K, Schwartze W, Schumann B, Lein W, Roos W. 2006. The Galpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. The Plant Cell 18:1510−23

doi: 10.1105/tpc.105.035121
[92]

Schwartze W, Roos W. 2008. The signal molecule lysophosphatidylcholine in Eschscholzia californica is rapidly metabolized by reacylation. Planta 229:183−91

doi: 10.1007/s00425-008-0819-9
[93]

Roos W, Evers S, Hieke M, Tschope M, Schumann B. 1998. Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Phytoalexin biosynthesis in cultured cells of Eschscholtzia californica. The Plant Physiology 118:349−64

doi: 10.1104/pp.118.2.349
[94]

Mariani ME, Fidelio GD. 2019. Secretory phospholipases A2 in plants. Frontiers in Plant Science 10:861

doi: 10.3389/fpls.2019.00861
[95]

Jablonická V, Mansfeld J, Heilmann I, Obložinský M, Heilmann M. 2016. Identification of a secretory phospholipase A2 from Papaver somniferum L. that transforms membrane phospholipids. Phytochemistry 129:4−13

doi: 10.1016/j.phytochem.2016.07.010
[96]

Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, et al. 2016. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Frontiers in Plant Science 7:61

[97]

Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, et al. 2024. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology 4:2

doi: 10.1007/s44154-023-00140-y
[98]

Yamada Y, Yoshimoto T, Yoshida ST, Sato F. 2016. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica. Frontiers in Plant Science 7:1352

doi: 10.3389/fpls.2016.01352
[99]

Zhang M, Lu P, Zheng Y, Huang X, Liu J, et al. 2024. Genome-wide identification of AP2/ERF gene family in Coptis Chinensis Franch reveals its role in tissue-specific accumulation of benzylisoquinoline alkaloids. BMC Genomics 25:972

doi: 10.1186/s12864-024-10883-1
[100]

Yamada Y, Koyama T, Sato F. 2011. Basic helix-loop-helix transcription factors and regulation of alkaloid biosynthesis. Plant Signaling & Behavior 6:1627−30

doi: 10.4161/psb.6.11.17599
[101]

Yamada Y, Motomura Y, Sato F. 2015. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells. Plant & Cell Physiology 56:1019−30

[102]

Goossens J, Mertens J, Goossens A. 2017. Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany 68:1333−47

doi: 10.1093/jxb/erw440
[103]

Yamada Y, Kokabu Y, Chaki K, Yoshimoto T, Ohgaki M, et al. 2011. Isoquinoline alkaloid biosynthesis is regulated by a unique bHLH-type transcription factor in Coptis japonica. Plant and Cell Physiology 52:1131−41

doi: 10.1093/pcp/pcr062
[104]

Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, et al. 2007. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant & Cell Physiology 48:8−18

doi: 10.1093/pcp/pcl041
[105]

Yamada Y, Sato F. 2016. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis. Scientific Reports 6:31988

doi: 10.1038/srep31988
[106]

Yamada Y, Shimada T, Motomura Y, Sato F. 2017. Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells. PLoS One 12:e0186953

doi: 10.1371/journal.pone.0186953
[107]

Huang X, Jia A, Huang T, Wang L, Yang G, et al. 2023. Genomic profiling of WRKY transcription factors and functional analysis of CcWRKY7, CcWRKY29, and CcWRKY32 related to protoberberine alkaloids biosynthesis in Coptis chinensis Franch. Frontiers in Genetics 14:1151645

doi: 10.3389/fgene.2023.1151645
[108]

Liu W, Tian X, Feng Y, Hu J, Wang B, et al. 2023. Genome-wide analysis of bHLH gene family in Coptis chinensis provides insights into the regulatory role in benzylisoquinoline alkaloid biosynthesis. Plant Physiology and Biochemistry 201:107846

doi: 10.1016/j.plaphy.2023.107846
[109]

Yamada Y, Nishida S, Shitan N, Sato F. 2020. Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate. Scientific Reports 10:18066

doi: 10.1038/s41598-020-75069-7
[110]

Apuya NR, Park JH, Zhang L, Ahyow M, Davidow P, et al. 2008. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors. Plant Biotechnology Journal 6:160−75

doi: 10.1111/j.1467-7652.2007.00302.x
[111]

Mishra S, Phukan UJ, Tripathi V, Singh DK, Luqman S, et al. 2015. PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Molecular Biology 89:173−86

doi: 10.1007/s11103-015-0361-7
[112]

Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, et al. 2020. Genetic manipulation of transcriptional regulators alters nicotine biosynthesis in tobacco. Plant and Cell Physiology 61:1041−53

doi: 10.1093/pcp/pcaa036
[113]

Paul P, Singh SK, Patra B, Sui X, Pattanaik S, et al. 2017. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytologist 213:1107−23

doi: 10.1111/nph.14252
[114]

van der Fits L, Memelink J. 2001. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. The Plant Journal 25:43−53

doi: 10.1111/j.1365-313X.2001.00932.x
[115]

Wang Y, Wang Y, Pan A, Miao Q, Han Y, et al. 2024. CaERF1-mediated ABA signal positively regulates camptothecin biosynthesis by activating the iridoid pathway in Camptotheca acuminata. International Journal of Biological Macromolecules 261:129560

doi: 10.1016/j.ijbiomac.2024.129560
[116]

Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:86−96

doi: 10.1016/j.bbagrm.2011.08.004
[117]

Yokoyama R. 2024. Evolution of aromatic amino acid metabolism in plants: a key driving force behind plant chemical diversity in aromatic natural products. Philosophical Transactions of the Royal Society B-Biological Sciences 379:20230352

doi: 10.1098/rstb.2023.0352
[118]

Yokoyama R, Kleven B, Gupta A, Wang Y, Maeda HA. 2022. 3-Deoxy-ᴅ-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Current Opinion in Plant Biology 67:102219

doi: 10.1016/j.pbi.2022.102219
[119]

Lopez-Nieves S, El-Azaz J, Men Y, Holland CK, Feng T, et al. 2022. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta. The Plant Journal 109:844−55

doi: 10.1111/tpj.15597
[120]

Tzin V, Malitsky S, Zvi MMB, Bedair M, Sumner L, et al. 2012. Expression of a bacterial feedback-insensitive 3-deoxy-ᴅ-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytologist 194:430−39

doi: 10.1111/j.1469-8137.2012.04052.x
[121]

Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA. 2021. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. Plant Cell 33:671−96

doi: 10.1093/plcell/koaa042
[122]

Rippert P, Matringe M. 2002. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. European Journal of Biochemistry 269:4753−61

doi: 10.1046/j.1432-1033.2002.03172.x
[123]

Schenck CA, Maeda HA. 2018. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149:82−102

doi: 10.1016/j.phytochem.2018.02.003
[124]

Schenck CA, Men Y, Maeda HA. 2017. Conserved molecular mechanism of TyrA dehydrogenase substrate specificity underlying alternative tyrosine biosynthetic pathways in plants and microbes. Frontiers in Molecular Biosciences 4:73

doi: 10.3389/fmolb.2017.00073
[125]

Yokoyama R, de Oliveira MVV, Takeda-Kimura Y, Ishihara H, Alseekh S, et al. 2022. Point mutations that boost aromatic amino acid production and CO2 assimilation in plants. Science Advances 8:eabo3416

doi: 10.1126/sciadv.abo3416
[126]

El-Azaz J, Moore B, Takeda-Kimura Y, Yokoyama R, Wijesingha Ahchige M, et al. 2023. Coordinated regulation of the entry and exit steps of aromatic amino acid biosynthesis supports the dual lignin pathway in grasses. Nature Communications 14:7242

doi: 10.1038/s41467-023-42587-7
[127]

Mishra R, Joshi RK, Zhao K. 2020. Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal 18:20−31

doi: 10.1111/pbi.13225
[128]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420−24

doi: 10.1038/nature17946
[129]

Matsoukas IG. 2018. Commentary: programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Frontiers in Genetics 9:21

doi: 10.3389/fgene.2018.00021
[130]

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149−57

doi: 10.1038/s41586-019-1711-4
[131]

Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, et al. 2011. A bacterial platform for fermentative production of plant alkaloids. Nature Communications 2:326

doi: 10.1038/ncomms1327
[132]

Nakagawa A, Nakamura S, Matsumura E, Yashima Y, Takao M, et al. 2021. Selection of the optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli. Applied Microbiology and Biotechnology 105:5433−47

doi: 10.1007/s00253-021-11401-z
[133]

Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, et al. 2008. Microbial production of plant benzylisoquinoline alkaloids. Proceedings of the National Academy of Sciences of the United States of America 105:7393−98

doi: 10.1073/pnas.0802981105
[134]

Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, et al. 2016. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nature Communications 7:10390

doi: 10.1038/ncomms10390
[135]

DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, et al. 2015. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology 11:465−71

doi: 10.1038/nchembio.1816
[136]

Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. 2015. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metabolic Engineering 31:74−83

doi: 10.1016/j.ymben.2015.06.010
[137]

Li Q, Jiao X, Li X, Shi W, Ma Y, et al. 2024. Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast. Journal of Integrative Plant Biology 66:1703−17

doi: 10.1111/jipb.13724
[138]

Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. 2015. Complete biosynthesis of opioids in yeast. Science 349:1095−100

doi: 10.1126/science.aac9373
[139]

Thodey K, Galanie S, Smolke CD. 2014. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology 10:837−44

doi: 10.1038/nchembio.1613
[140]

Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJJ. 2015. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10:e0124459

doi: 10.1371/journal.pone.0124459
[141]

Gou Y, Li D, Zhao M, Li M, Zhang J, et al. 2024. Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast. Nature Communications 15:5238

doi: 10.1038/s41467-024-49554-w
[142]

Liu T, Gou Y, Zhang B, Gao R, Dong C, et al. 2022. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and Bioengineering 119:1314−26

doi: 10.1002/bit.28040
[143]

Li Y, Li S, Thodey K, Trenchard I, Cravens A, Smolke CD. 2018. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proceedings of the National Academy of Sciences of the United States of America 115:E3922−E3931

doi: 10.1073/pnas.1721469115
[144]

Li Y, Smolke CD. 2016. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nature Communications 7:12137

doi: 10.1038/ncomms12137
[145]

Jamil OK, Cravens A, Payne JT, Kim CY, Smolke CD. 2022. Biosynthesis of tetrahydropapaverine and semisynthesis of papaverine in yeast. Proceedings of the National Academy of Sciences of the United States of America 119:e2205848119

doi: 10.1073/pnas.2205848119
[146]

Sasaki K, Tsurumaru Y, Yazaki K. 2009. Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1. Bioscience Biotechnology and Biochemistry 73:759−61

doi: 10.1271/bbb.80729
[147]

Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, et al. 2008. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnology 8:83

doi: 10.1186/1472-6750-8-83
[148]

Mishra G, Mohapatra SK, Rout GR. 2024. Plant membrane transporters function under abiotic stresses: a review. Planta 260:125

doi: 10.1007/s00425-024-04548-2
[149]

Dastmalchi M, Chang L, Chen R, Yu L, Chen X, et al. 2019. Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiology 181:916−33

doi: 10.1104/pp.19.00565
[150]

Shitan N, Dalmas F, Dan K, Kato N, Ueda K, et al. 2013. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry 91:109−16

doi: 10.1016/j.phytochem.2012.02.012
[151]

Shitan N, Bazin I, Dan K, Obata K, Kigawa K, et al. 2003. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proceedings of the National Academy of Sciences of the United States of America 100:751−6

doi: 10.1073/pnas.0134257100
[152]

Yamada Y, Urui M, Oki H, Inoue K, Matsui H, et al. 2021. Transport engineering for improving the production and secretion of valuable alkaloids in Escherichia coli. Metabolic Engineering Communications 13:e00184

doi: 10.1016/j.mec.2021.e00184
[153]

Yamada Y, Nakagawa A, Sato F, Minami H, Shitan N. 2022. Transport engineering using tobacco transporter NtJAT1 enhances alkaloid production in Escherichia coli. Bioscience Biotechnology and Biochemistry 86:865−69

doi: 10.1093/bbb/zbac056
[154]

Tian Y, Kong L, Li Q, Wang Y, Wang Y, et al. 2024. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Natural Product Reports 41:1787−810

doi: 10.1039/D4NP00029C
[155]

Shitan N, Kiuchi F, Sato F, Yazaki K, Yoshimatsu K. 2005. Establishment of Rhizobium-mediated transformation of Coptis japonica and molecular analyses of transgenic plants. Plant Biotechnology 22:113−18

doi: 10.5511/plantbiotechnology.22.113
[156]

Lotz D, Imani J, Ehlers K, Becker A. 2022. Towards a genetic model organism: an efficient method for stable genetic transformation of Eschscholzia californica (Ranunculales). Plant Cell, Tissue and Organ Culture 149:823−32

doi: 10.1007/s11240-021-02223-y
[157]

Facchini PJ, Loukanina N, Blanche V. 2008. Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Reports 27:719−27

doi: 10.1007/s00299-007-0483-8
[158]

Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, et al. 2020. Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: A systematic review in plants. Frontiers in Plant Science 11:574959

doi: 10.3389/fpls.2020.574959
[159]

Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, et al. 2015. Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnology Journal 13:409−20

doi: 10.1111/pbi.12346
[160]

Carr SC, Facchini PJ, Ng KKS. 2024. Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy. Acta Crystallographica Section D: Structural Biology 80:675−85

doi: 10.1107/S2059798324007733