[1]

FAO. 2024. Global status of salt-affected soils – Main report. Rome, Italy. 240 pp

[2]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[3]

Mohanavelu A, Naganna SR, Al-Ansari N. 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture 11:983

doi: 10.3390/agriculture11100983
[4]

Gao Y, Shao G, Wu S, Wang X, Lu J, et al. 2021. Changes in soil salinity under treated wastewater irrigation: a meta-analysis. Agricultural Water Management 255:106986

doi: 10.1016/j.agwat.2021.106986
[5]

Cheeseman JM. 2015. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist 206:557−70

doi: 10.1111/nph.13217
[6]

Flowers TJ, Galal HK, Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37:604−12

doi: 10.1071/FP09269
[7]

Mann A, Lata C, Kumar N, Kumar A, Kumar A, et al. 2023. Halophytes as new model plant species for salt tolerance strategies. Frontiers in Plant Science 14:1137211

doi: 10.3389/fpls.2023.1137211
[8]

Marcum KB. 1999. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Science 39:1153−60

doi: 10.2135/cropsci1999.0011183X003900040034x
[9]

Loch DS, Ebina M, Choi JS, Han L. 2017. Ecological implications of Zoysia species, distribution, and adaptation for management and use of zoysiagrasses. International Turfgrass Society Research Journal 13:11−25

doi: 10.2134/itsrj2016.10.0857
[10]

Patton AJ, Schwartz BM, Kenworthy KE. 2017. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: a review. Crop Science 57:S-37−S-72

doi: 10.2135/cropsci2017.02.0074
[11]

Marcum KB, Murdoch CL. 1990. Salt glands in the Zoysieae. Annals of Botany 66:1−7

doi: 10.1093/oxfordjournals.aob.a087991
[12]

Marcum KB, Anderson SJ, Engelke MC. 1998. Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Science 38:806−10

doi: 10.2135/cropsci1998.0011183X003800030031x
[13]

Koyama M, Oi T. 2024. Morphology and excreting-function of microhairs in salt-tolerant Zoysia japonica, comparing adaxial and abaxial leaf surfaces. Flora 312:152472

doi: 10.1016/j.flora.2024.152472
[14]

Céccoli G, Ramos J, Pilatti V, Dellaferrera I, Tivano JC, et al. 2015. Salt glands in the Poaceae family and their relationship to salinity tolerance. The Botanical Review 81:162−78

doi: 10.1007/s12229-015-9153-7
[15]

Hooks T, Masabni J, Ganjegunte G, Sun L, Chandra A, et al. 2022. Salt tolerance of seven genotypes of zoysiagrass (Zoysia spp.). Technology in Horticulture 2:8

doi: 10.48130/TIH-2022-0008
[16]

Yamamoto A, Hashiguchi M, Akune R, Masumoto T, Muguerza M, et al. 2016. The relationship between salt gland density and sodium accumulation/secretion in a wide selection from three Zoysia species. Australian Journal of Botany 64:277−84

doi: 10.1071/BT15261
[17]

Li X, Ye G, Shen Z, Li J, Hao D, et al. 2023. Na+ and K+ homeostasis in different organs of contrasting Zoysia japonica accessions under salt stress. Environmental and Experimental Botany 214:105455

doi: 10.1016/j.envexpbot.2023.105455
[18]

Kronzucker HJ, Britto DT. 2011. Sodium transport in plants: a critical review. New Phytologist 189:54−81

doi: 10.1111/j.1469-8137.2010.03540.x
[19]

Keisham M, Mukherjee S, Bhatla SC. 2018. Mechanisms of sodium transport in plants—progresses and challenges. International Journal of Molecular Sciences 19:647

doi: 10.3390/ijms19030647
[20]

Li J, Yuan F, Liu Y, Zhang M, Liu Y, et al. 2020. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biology 20:493

doi: 10.1186/s12870-020-02703-x
[21]

Riedelsberger J, Miller JK, Valdebenito-Maturana B, Piñeros MA, González W, et al. 2021. Plant HKT channels: an updated view on structure, function and gene regulation. International Journal of Molecular Sciences 22:1892

doi: 10.3390/ijms22041892
[22]

Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, et al. 2015. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology 32:113−20

doi: 10.1016/j.copbio.2014.11.025
[23]

Horie T, Hauser F, Schroeder JI. 2009. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14:660−68

doi: 10.1016/j.tplants.2009.08.009
[24]

Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, et al. 2017. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal 91:657−70

doi: 10.1111/tpj.13595
[25]

Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, et al. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 30:497−507

doi: 10.1111/j.1365-3040.2007.01637.x
[26]

Solis CA, Yong MT, Zhou M, Venkataraman G, Shabala L, et al. 2022. Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza. International Journal of Molecular Sciences 23:2092

doi: 10.3390/ijms23042092
[27]

Bassil E, Coku A, Blumwald E. 2012. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany 63:5727−40

doi: 10.1093/jxb/ers250
[28]

Qiu QS. 2016. Plant endosomal NHX antiporters: activity and function. Plant Signaling & Behavior 11:e1147643

doi: 10.1080/15592324.2016.1147643
[29]

Dragwidge JM, Scholl S, Schumacher K, Gendall AR. 2019. NHX-type Na+(K+)/H+ antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis thaliana. Journal of Cell Science 132:jcs226472

doi: 10.1242/jcs.226472
[30]

Lu C, Yuan F, Guo J, Han G, Wang C, et al. 2021. Current understanding of role of vesicular transport in salt secretion by salt glands in recretohalophytes. International Journal of Molecular Sciences 22:2203

doi: 10.3390/ijms22042203
[31]

Shi H, Ishitani M, Kim C, Zhu JK. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97:6896−901

doi: 10.1073/pnas.120170197
[32]

Qian YL, Engelke MC, Foster MJV. 2000. Salinity effects on zoysiagrass cultivars and experimental lines. Crop Science 40:488−92

doi: 10.2135/cropsci2000.402488x
[33]

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9:671−75

doi: 10.1038/nmeth.2089
[34]

Tanaka H, Hirakawa H, Kosugi S, Nakayama S, Ono A, et al. 2016. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research 23:171−80

doi: 10.1093/dnares/dsw006
[35]

Gholizadeh F, Mirmazloum I, Janda T. 2024. Genome-wide identification of HKT gene family in wheat (Triticum aestivum L.): insights from the expression of multiple genes (HKT, SOS, TVP and NHX) under salt stress. Plant Stress 13:100539

doi: 10.1016/j.stress.2024.100539
[36]

Maghraby A, Alzalaty M. 2024. Genome-wide identification, characterization and evolutionary analysis of betaine aldehyde dehydrogenase (BADH), mitogen-activated protein kinase (MAPK) and sodium/hydrogen exchanger (NHX) genes in maize (Zea mays) under salt stress. Genetic Resources and Crop Evolution 71:4855−70

doi: 10.1007/s10722-024-01930-7
[37]

Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40

doi: 10.1093/bioinformatics/btu031
[38]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[39]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[40]

Thornton B, Basu C. 2011. Real-time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education 39:145−54

doi: 10.1002/bmb.20461
[41]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[42]

Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, et al. 2006. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science 11:372−74

doi: 10.1016/j.tplants.2006.06.001
[43]

Wang F, Singh R, Genovesi AD, Wai CM, Huang X, et al. 2015. Sequence-tagged high-density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae. The Plant Journal 82:744−57

doi: 10.1111/tpj.12842
[44]

Huang X, Wang F, Singh R, Reinert JA, Engelke MC, et al. 2016. Construction of high-resolution genetic maps of Zoysia matrella (L.) Merrill and applications to comparative genomic analysis and QTL mapping of resistance to fall armyworm. BMC Genomics 17:562

doi: 10.1186/s12864-016-2969-7
[45]

Yaneshita M, Kaneko S, Sasakuma T. 1999. Allotetraploidy of Zoysia species with 2n=40 based on a RFLP genetic map. Theoretical and Applied Genetics 98:751−56

doi: 10.1007/s001220051131
[46]

Yuan F, Leng B, Wang B. 2016. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Frontiers in Plant Science 7:977

doi: 10.3389/fpls.2016.00977
[47]

Marcum KB, Murdoch CL. 1990. Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agronomy Journal 82:892−96

doi: 10.2134/agronj1990.00021962008200050009x
[48]

Cao B, Xia Z, Liu C, Fan W, Zhang S, et al. 2020. New insights into the structure-function relationship of the endosomal-type Na+, K+/H+ antiporter NHX6 from mulberry (Morus notabilis). International Journal of Molecular Sciences 21:428

doi: 10.3390/ijms21020428