[1]

Bevacqua E, Schleussner CF, Zscheischler J. 2025. A year above 1.5 °C signals that Earth is most probably within the 20-year period that will reach the Paris Agreement limit. Nature Climate Change 15:262−265

doi: 10.1038/s41558-025-02246-9
[2]

Intergovernmental Panel on Climate Change. 2023. Climate Change 2022 - Mitigation of Climate Change: Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, et al. Cambridge, UK and New York, NY, USA: Cambridge University Press. doi: 10.1017/9781009157926

[3]

Matthews HD, Wynes S. 2022. Current global efforts are insufficient to limit warming to 1.5 °C. Science 376:1404−1409

doi: 10.1126/science.abo3378
[4]

Armstrong McKay DI, Staal A, Abrams JF, Winkelmann R, Sakschewski B, et al. 2022. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377:eabn7950

doi: 10.1126/science.abn7950
[5]

Liu Z, Deng Z, Davis SJ, Ciais P. 2024. Global carbon emissions in 2023. Nature Reviews Earth & Environment 5:253−254

doi: 10.1038/s43017-024-00532-2
[6]

Tanaka K, Azar C, Boucher O, Ciais P, Gaucher Y, et al. 2022. Paris Agreement requires substantial, broad, and sustained policy efforts beyond COVID-19 public stimulus packages. Climatic Change 172:1

doi: 10.1007/s10584-022-03355-6
[7]

Tong D, Zhang Q, Zheng Y, Caldeira K, Shearer C, et al. 2019. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572:373−377

doi: 10.1038/s41586-019-1364-3
[8]

Wang J, Shan Y, Cui C, Zhao C, Meng J, et al. 2024. Investigating the fast energy-related carbon emissions growth in African countries and its drivers. Applied Energy 357:122494

doi: 10.1016/j.apenergy.2023.122494
[9]

Kramer GJ, Haigh M. 2009. No quick switch to low-carbon energy. Nature 462:568−569

doi: 10.1038/462568a
[10]

Cherp A, Vinichenko V, Tosun J, Gordon JA, Jewell J. 2021. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nature Energy 6:742−754

doi: 10.1038/s41560-021-00863-0
[11]

Hansen TA. 2022. Stranded assets and reduced profits: analyzing the economic underpinnings of the fossil fuel industry's resistance to climate stabilization. Renewable and Sustainable Energy Reviews 158:112144

doi: 10.1016/j.rser.2022.112144
[12]

Ha-Duong M, Grubb MJ, Hourcade JC. 1997. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature 390:270−273

doi: 10.1038/36825
[13]

Rickman J, Falkenberg M, Kothari S, Larosa F, Grubb M, et al. 2024. The challenge of phasing-out fossil fuel finance in the banking sector. Nature Communications 15:7881

doi: 10.1038/s41467-024-51662-6
[14]

Nascimento L, Godinho C, Kuramochi T, Moisio M, den Elzen M, et al. 2024. Climate policy in 2023. Nature Reviews Earth & Environment 5:255−257

doi: 10.1038/s43017-024-00541-1
[15]

UN Environment Programme. 2024. Emissions Gap Report 2024. www.unep.org/resources/emissions-gap-report-2024

[16]

Nordhaus WD. 2001. Global warming economics. Science 294:1283−1284

doi: 10.1126/science.1065007
[17]

Stern N, Taylor C. 2007. Climate change: risk, ethics, and the stern review. Science 317:203−204

doi: 10.1126/science.1142920
[18]

Dutt V, Gonzalez C. 2012. Why do we want to delay actions on climate change? Effects of probability and timing of climate consequences. Journal of Behavioral Decision Making 25:154−164

doi: 10.1002/bdm.721
[19]

Sterman JD. 2008. Risk communication on climate change: mental models and mass balance. Science 322:532−533

doi: 10.1126/science.1162574
[20]

McKinsey Global Institute. The net-zero transition: what it would cost, what it could bring. 2022. www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-what-it-could-bring

[21]

Kotchen MJ, Rising JA, Wagner G. 2023. The costs of "costless" climate mitigation. Science 382:1001−1003

doi: 10.1126/science.adj2453
[22]

Covert T, Greenstone M, Knittel CR. 2016. Will we ever stop using fossil fuels? Journal of Economic Perspectives 30:117−138

doi: 10.1257/jep.30.1.117
[23]

Weitzman ML. 2012. GHG targets as insurance against catastrophic climate damages. Journal of Public Economic Theory 14:221−244

doi: 10.1111/j.1467-9779.2011.01539.x
[24]

Ballard T, Lewandowsky S. 2015. When, not if: the inescapability of an uncertain climate future. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373:20140464

doi: 10.1098/rsta.2014.0464
[25]

US Environmental Protection Agency. 2023. EPA report on the social cost of greenhouse gases: estimates incorporating recent scientific advances. Report. No. EPA-HQ-OAR-2021-0317

[26]

Interagency Working Group on Social Cost of Greenhouse Gases. 2022. Technical support document: social cost of carbon, methane, and nitrous oxide: interim estimates under executive order 13990. Report. 20-08-020

[27]

van der Wijst KI, Bosello F, Dasgupta S, Drouet L, Emmerling J, et al. 2023. New damage curves and multimodel analysis suggest lower optimal temperature. Nature Climate Change 13:434−441

doi: 10.1038/s41558-023-01636-1
[28]

Bilal A, Känzig DR. 2024. The macroeconomic impact of climate change: global vs. local temperature. National Bureau of Economic Research 00:32450

doi: 10.3386/w32450
[29]

Kotz M, Levermann A, Wenz L. 2024. The economic commitment of climate change. Nature 628:551−557

doi: 10.1038/s41586-024-07219-0
[30]

Burke M, Hsiang SM, Miguel E. 2015. Global non-linear effect of temperature on economic production. Nature 527:235−239

doi: 10.1038/nature15725
[31]

Pehl M, Schreyer F, Luderer G. 2024. Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0). Geoscientific Model Development Discussions 17:2015−2038

doi: 10.5194/gmd-17-2015-2024
[32]

Alberth S, Hope C. 2007. Climate modelling with endogenous technical change: stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model. Energy Policy 35(3):1795−1807

doi: 10.1016/j.enpol.2006.05.015
[33]

Tol RSJ. 2002. Welfare specifications and optimal control of climate change: an application of fund. Energy Economics 24:367−376

doi: 10.1016/S0140-9883(02)00010-5
[34]

Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V, et al. 2018. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy 3:515−527

doi: 10.1038/s41560-018-0172-6
[35]

Allen MR. 2016. Drivers of peak warming in a consumption-maximizing world. Nature Climate Change 6(7):684−686

doi: 10.1038/nclimate2977
[36]

Cai Y, Lenton TM, Lontzek TS. 2016. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nature Climate Change 6:520−525

doi: 10.1038/nclimate2964
[37]

Lemoine D, Traeger CP. 2016. Economics of tipping the climate dominoes. Nature Climate Change 6(5):514−519

doi: 10.1038/nclimate2902
[38]

Lenton TM, McKay DIA, Loriani S, Abrams JF, Lade SJ, et al. 2023. The Global Tipping Points Report 2023. https://global-tipping-points.org

[39]

Ricke KL, Moreno-Cruz JB, Schewe J, Levermann A, Caldeira K. 2016. Policy thresholds in mitigation. Nature Geoscience 9:5−6

doi: 10.1038/ngeo2607
[40]

Ricke K, Drouet L, Caldeira K, Tavoni M. 2018. Country-level social cost of carbon. Nature Climate Change 8:895−900

doi: 10.1038/s41558-018-0282-y
[41]

Rennert K, Errickson F, Prest BC, Rennels L, Newell RG, et al. 2022. Comprehensive evidence implies a higher social cost of CO2. Nature 610:687−692

doi: 10.1038/s41586-022-05224-9
[42]

Hänsel MC, Drupp MA, Johansson DJA, Nesje F, Azar C, et al. 2020. Climate economics support for the UN climate targets. Nature Climate Change 10:781−789

doi: 10.1038/s41558-020-0833-x
[43]

Way R, Ives MC, Mealy P, Farmer JD. 2022. Empirically grounded technology forecasts and the energy transition. Joule 6:2057−2082

doi: 10.1016/j.joule.2022.08.009
[44]

Wang R, Saunders H, Moreno-Cruz J, Caldeira K. 2019. Induced energy-saving efficiency improvements amplify effectiveness of climate change mitigation. Joule 3:2103−2119

doi: 10.1016/j.joule.2019.07.024
[45]

Saunders HD. 2008. Fuel conserving (and using) production functions. Energy Economics 30:2184−2235

doi: 10.1016/j.eneco.2007.11.006
[46]

Barrage L, Nordhaus W. 2024. Policies, projections, and the social cost of carbon: results from the DICE-2023 model. Proceedings of the National Academy of Sciences of the United States of America 121:e2312030121

doi: 10.1073/pnas.2312030121
[47]

Intergovernmental Panel on Climate Change. 2021. Climate Change 2021 – the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University www.ipcc.ch/report/ar6/wg1

[48]

Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, et al. 2005. Earth's energy imbalance: confirmation and implications. Science 308:1431−1435

doi: 10.1126/science.1110252
[49]

Leimbach M, Kriegler E, Roming N, Schwanitz J. 2017. Future growth patterns of world regions – a GDP scenario approach. Global Environmental Change 42:215−225

doi: 10.1016/j.gloenvcha.2015.02.005
[50]

The British Petroleum Company. 2021. Statistical review of world energy, 70th edition. www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf

[51]

Hogan WW, Manne AS. 1977. Energy-economy interactions: the fable of the elephant and the rabbit? In Modeling Energy-Economy Interactions, ed. Hitch CJ. 1st Edition. London: Routledge. pp. 247–277 doi: 10.4324/9781315680408

[52]

Cobb CW, Douglas PH. 1928. A theory of production. The American Economic Review 18(1):139−165

[53]

Saunders HD. 2013. Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts. Technological Forecasting and Social Change 80:1317−1330

doi: 10.1016/j.techfore.2012.12.007
[54]

Wang Y, Wang R, Tanaka K, Ciais P, Penuelas J, et al. 2023. Accelerating the energy transition towards photovoltaic and wind in China. Nature 619:761−767

doi: 10.1038/s41586-023-06180-8
[55]

Van Ginkel KC, Wouter Botzen WJ, Haasnoot M, Bachner G, Steininger KW, et al. 2020. Climate change induced socio-economic tipping points: review and stakeholder consultation for policy relevant research. Environmental Research Letters 15:023001

doi: 10.1088/1748-9326/ab6395
[56]

Xing X, Xiong Y, Yang R, Wang R, Wang W, et al. 2021. Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations. Proceedings of the National Academy of Sciences of the United States of America 118(33):e2109098118

doi: 10.1073/pnas.2109098118
[57]

Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, et al. 2018. Negative emissions: Part 2: Costs, potentials and side effects. Environmental Research Letters 13:063002

doi: 10.1088/1748-9326/aabf9f
[58]

Rotmans J, van Asselt MBA. 2001. Uncertainty management in integrated assessment modeling: towards a pluralistic approach. Environmental Monitoring and Assessment 69:101−130

doi: 10.1023/A:1010722120729
[59]

Ware J, Pearce O. 2024. Counting the cost 2024: a year of climate breakdown. www.christianaid.org.uk/sites/default/files/2024-12/counting-the-cost-2024.pdf

[60]

Agreement P. 2023. The global Stocktake at COP28. Nature Climate Change 13:1146−1147

doi: 10.1038/s41558-023-01832-z