[1]

Wang L, Hart BE, Khan GA, Cruz ER, Persson S, et al. 2020. Associations between phytohormones and cellulose biosynthesis in land plants. Annals of Botany 126:807−24

doi: 10.1093/aob/mcaa121
[2]

Jonsson K, Hamant O, Bhalerao RP. 2022. Plant cell walls as mechanical signaling hubs for morphogenesis. Current Biology 32:R334−R340

doi: 10.1016/j.cub.2022.02.036
[3]

Codjoe JM, Miller K, Haswell ES. 2022. Plant cell mechanobiology: Greater than the sum of its parts. The Plant Cell 34:129−45

doi: 10.1093/plcell/koab230
[4]

Wolf S. 2022. Cell wall signaling in plant development and defense. Annual Review of Plant Biology 73:323−53

doi: 10.1146/annurev-arplant-102820-095312
[5]

Sánchez-Rodríguez C, Shi Y, Kesten C, Zhang D, Sancho-Andrés G, et al. 2018. The cellulose synthases are cargo of the TPLATE adaptor complex. Molecular Plant 11:346−49

doi: 10.1016/j.molp.2017.11.012
[6]

Zhang S, Sheng H, Ma Y, Wei Y, Liu D, et al. 2022. Mutation of CESA1 phosphorylation site influences pectin synthesis and methylesterification with a role in seed development. Journal of Plant Physiology 270:153631

doi: 10.1016/j.jplph.2022.153631
[7]

Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. 2016. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiology 170:234−49

doi: 10.1104/pp.15.01395
[8]

Sowinski EE, Westman BM, Redmond CR, Kong Y, Olek AT, et al. 2022. Lack of xyloglucan in the cell walls of the Arabidopsis xxt1/xxt2 mutant results in specific increases in homogalacturonan and glucomannan. The Plant Journal 110:212−27

doi: 10.1111/tpj.15666
[9]

Du J, Kirui A, Huang S, Wang L, Barnes WJ, et al. 2020. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. The Plant Cell 32:3576−97

doi: 10.1105/tpc.20.00252
[10]

Wang T, Park YB, Cosgrove DJ, Hong M. 2015. Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiology 168:871−84

doi: 10.1104/pp.15.00665
[11]

Kirui A, Du J, Zhao W, Barnes W, Kang X, et al. 2021. A pectin methyltransferase modulates polysaccharide dynamics and interactions in Arabidopsis primary cell walls: Evidence from solid-state NMR. Carbohydrate Polymers 270:118370

doi: 10.1016/j.carbpol.2021.118370
[12]

Vaahtera L, Schulz J, Hamann T. 2019. Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants 5:924−32

doi: 10.1038/s41477-019-0502-0
[13]

Gallei M, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger's cat out of the bag. Current Opinion in Plant Biology 53:43−49

doi: 10.1016/j.pbi.2019.10.003
[14]

Zhou JJ, Luo J. 2018. The PIN-FORMED auxin efflux carriers in plants. International Journal of Molecular Sciences 19:2759

doi: 10.3390/ijms19092759
[15]

Wang Y, Jiao Y. 2018. Auxin and above-ground meristems. Journal of Experimental Botany 69:147−54

doi: 10.1093/jxb/erx299
[16]

Yang W, Schuster C, Beahan CT, Charoensawan V, Peaucelle A, et al. 2016. Regulation of meristem morphogenesis by cell wall synthases in Arabidopsis. Current Biology 26:1404−15

doi: 10.1016/j.cub.2016.04.026
[17]

Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S. 2010. Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends in Plant Science 15:291−301

doi: 10.1016/j.tplants.2010.03.002
[18]

Miart F, Desprez T, Biot E, Morin H, Belcram K, et al. 2014. Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant Journal 77:71−84

doi: 10.1111/tpj.12362
[19]

Glanc M, Fendrych M, Friml J. 2018. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants 4:1082−88

[20]

Feraru E, Feraru MI, Kleine-Vehn J, Martiniere A, Mouille G, et al. 2011. PIN polarity maintenance by the cell wall in Arabidopsis. Current Biology 21:338−43

doi: 10.1016/j.cub.2011.01.036
[21]

Lehman TA, Sanguinet KA. 2019. Auxin and cell wall crosstalk as revealed by the Arabidopsis thaliana cellulose synthase mutant radially swollen 1. Plant & Cell Physiol 60:1487−503

doi: 10.1093/pcp/pcz055
[22]

Gonneau M, Desprez T, Guillot A, Vernhettes S, Höfte H. 2014. Catalytic subunit stoichiometry within the cellulose synthase complex. Plant Physiology 166:1709−12

doi: 10.1104/pp.114.250159
[23]

Men S, Boutté Y, Ikeda Y, Li X, Palme K, et al. 2008. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biology 10:237−44

doi: 10.1038/ncb1686
[24]

McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, et al. 2019. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 116:12857−62

doi: 10.1073/pnas.1819077116
[25]

Daněk M, Angelini J, Malínská K, Andrejch J, Amlerová Z, et al. 2020. Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. The Plant Journal 101:619−36

doi: 10.1111/tpj.14566
[26]

Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, et al. 2012. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 109:12805−10

doi: 10.1073/pnas.1202040109
[27]

Li H, von Wangenheim D, Zhang X, Tan S, Darwish-Miranda N, et al. 2021. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist 229:351−69

doi: 10.1111/nph.16887
[28]

Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, et al. 2010. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biology 8:e1000516

doi: 10.1371/journal.pbio.1000516
[29]

Liu Z, Persson S, Sánchez-Rodríguez C. 2015. At the border: the plasma membrane–cell wall continuum. Journal of Experimental Botany 66:1553−63

doi: 10.1093/jxb/erv019
[30]

Li T, Yan A, Bhatia N, Altinok A, Afik E, et al. 2019. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nature Communications 10:726

doi: 10.1038/s41467-019-08575-6
[31]

Lee H, Ganguly A, Baik S, Cho HT. 2021. Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code. The Plant Cell 33:3513−31

doi: 10.1093/plcell/koab207
[32]

Barbosa ICR, Hammes UZ, Schwechheimer C. 2018. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends in Plant Science 23:523−38

doi: 10.1016/j.tplants.2018.03.009
[33]

Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM, et al. 2018. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications 9:1174

doi: 10.1038/s41467-018-03582-5
[34]

Vanneste S, Pei Y, Friml J. 2025. Mechanisms of auxin action in plant growth and development. Nature Reviews Molecular Cell Biology 26:648−66

doi: 10.1038/s41580-025-00851-2
[35]

Naramoto S. 2017. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Current Opinion in Plant Biology 40:8−14

doi: 10.1016/j.pbi.2017.06.012
[36]

Marhava P. 2022. Recent developments in the understanding of PIN polarity. New Phytologist 233:624−30

doi: 10.1111/nph.17867
[37]

Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32:295−318

doi: 10.1105/tpc.19.00335
[38]

Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, et al. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development 146:dev151894

doi: 10.1242/dev.151894
[39]

Wolf S. 2017. Plant cell wall signalling and receptor-like kinases. Biochemical Journal 474:471−92

doi: 10.1042/BCJ20160238
[40]

Holzwart E, Wanke F, Glöckner N, Höfte H, Harter K, et al. 2020. A mutant allele uncouples the brassinosteroid-dependent and independent functions of BRASSINOSTEROID INSENSITIVE 1. Plant Physiology 182:669−78

doi: 10.1104/pp.19.00448
[41]

Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. 2020. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367:1003−7

doi: 10.1126/science.aaz5103
[42]

Wolf S, Mravec J, Greiner S, Mouille G, Höfte H. 2012. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Current Biology 22:1732−37

doi: 10.1016/j.cub.2012.07.036
[43]

Rao X, Dixon RA. 2017. Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Frontiers in Plant Science 8:806

doi: 10.3389/fpls.2017.00806
[44]

Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, et al. 2014. A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America 111:15261−66

doi: 10.1073/pnas.1322979111
[45]

Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, et al. 2018. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Science Signaling 11:eaao3070

doi: 10.1126/scisignal.aao3070
[46]

Li Z, Sela A, Fridman Y, Garstka L, Höfte H, et al. 2021. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 148:dev199504

doi: 10.1242/dev.199504
[47]

Lu Q, Zhang Y, Hellner J, Giannini C, Xu X, et al. 2022. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America 119:e2118220119

doi: 10.1073/pnas.2118220119
[48]

Holzwart E, Huerta AI, Glöckner N, Garnelo Gómez B, Wanke F, et al. 2018. BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. Proceedings of the National Academy of Sciences of the United States of America 115:11838−43

doi: 10.1073/pnas.1814434115
[49]

Kang YH, Breda A, Hardtke CS. 2017. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems. Development 144:272−80

doi: 10.1242/dev.145623
[50]

Gómez BG, Holzwart E, Shi C, Lozano-Durán R, Wolf S. 2021. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. Journal of Cell Science 134:jcs259134

doi: 10.1242/jcs.259134
[51]

Yue ZL, Liu N, Deng ZP, Zhang Y, Wu ZM, et al. 2022. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Current Biology 32:2454−66.e7

doi: 10.1016/j.cub.2022.04.028
[52]

Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, et al. 2023. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. Molecular Plant 16:865−81

doi: 10.1016/j.molp.2023.03.015
[53]

Cai W, Hong J, Liu Z, Wang W, Zhang J, et al. 2023. A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Current Biology 33:498−506.e6

doi: 10.1016/j.cub.2022.12.035
[54]

Yang Z. 2022. Plant growth: a matter of WAK seeing the wall and talking to BRI1. Current Biology 32:R564−R566

doi: 10.1016/j.cub.2022.05.014
[55]

Zhang Q. 2009. Genetics and improvement of bacterial blight resistance of hybrid rice in China. Rice Science 16:83−92

doi: 10.1016/S1672-6308(08)60062-1
[56]

Rui Y, Anderson CT. 2016. Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thaliana. Plant Physiology 170:1398−419

doi: 10.1104/pp.15.01066
[57]

Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L, et al. 2022. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 119:e2119258119

doi: 10.1073/pnas.2119258119
[58]

Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H, et al. 2021. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Science Advances 7:eabf0356

doi: 10.1126/sciadv.abf0356
[59]

Chaudhary A, Chen X, Gao J, Leśniewska B, Hammerl R, et al. 2020. The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genetics 16:e1008433

doi: 10.1371/journal.pgen.1008433
[60]

Tsang DL, Edmond C, Harrington JL, Nühse TS. 2011. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiology 156:596−604

doi: 10.1104/pp.111.175372
[61]

Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, et al. 2015. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications 6:6043

doi: 10.1038/ncomms7043
[62]

Hamann T, Bennett M, Mansfield J, Somerville C. 2009. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant Journal 57:1015−26

doi: 10.1111/j.1365-313X.2008.03744.x
[63]

Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A, et al. 2012. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiology 159:105−17

doi: 10.1104/pp.112.195198
[64]

Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, et al. 2018. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 145:dev166678

doi: 10.1242/dev.166678
[65]

Seifert GJ. 2021. The FLA4-FEI pathway: a unique and mysterious signaling module related to cell wall structure and stress signaling. Genes 12:145

doi: 10.3390/genes12020145
[66]

Tang D, Wang G, Zhou JM. 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant Cell 29:618−37

doi: 10.1105/tpc.16.00891
[67]

Zhao C, Jiang W, Zayed O, Liu X, Tang K, et al. 2020. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review 8:nwaa149

doi: 10.1093/nsr/nwaa149
[68]

Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ, et al. 2020. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579:561−66

doi: 10.1038/s41586-020-2106-2
[69]

Lin W, Tang W, Pan X, Huang A, Gao X, et al. 2022. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Current Biology 32:497−507.e4

doi: 10.1016/j.cub.2021.11.030
[70]

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287−89

doi: 10.1126/science.aal2541
[71]

Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, et al. 2019. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572:270−74

doi: 10.1038/s41586-019-1409-7
[72]

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, et al. 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 115:13123−28

doi: 10.1073/pnas.1816991115
[73]

Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, et al. 2019. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO Journal 38:e100353

doi: 10.15252/embj.2018100353
[74]

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, et al. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology 28:666−75.e5

doi: 10.1016/j.cub.2018.01.023
[75]

Guo H, Nolan TM, Song G, Liu S, Xie Z, et al. 2018. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Current Biology 28:3316−24.e6

doi: 10.1016/j.cub.2018.07.078
[76]

Zhang C, Lei Y, Lu C, Wang L, Wu J. 2020. MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology 62:1159−75

doi: 10.1111/jipb.12902
[77]

Yu F, Qian L, Nibau C, Duan Q, Kita D, et al. 2012. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proceedings of the National Academy of Sciences of the United States of America 109:14693−98

doi: 10.1073/pnas.1212547109
[78]

Chen J, Yu F, Liu Y, Du C, Li X, et al. 2016. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113:E5519−E5527

doi: 10.1073/pnas.1608449113
[79]

Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, et al. 2015. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. Journal of Experimental Botany 66:3831−40

doi: 10.1093/jxb/erv186
[80]

Ellis C, Karafyllidis I, Wasternack C, Turner JG. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. The Plant Cell 14:1557−66

doi: 10.1105/tpc.002022
[81]

Wu Q, Li Y, Lyu M, Luo Y, Shi H, et al. 2020. Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation. Science Advances 6:eabc9294

doi: 10.1126/sciadv.abc9294
[82]

Okamoto T, Takatani S, Motose H, Iida H, Takahashi T. 2021. The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. Plant Cell Reports 40:575−82

doi: 10.1007/s00299-020-02653-6
[83]

Jacobsen AGR, Jervis G, Xu J, Topping JF, Lindsey K. 2021. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. New Phytologist 231:225−42

doi: 10.1111/nph.17180
[84]

Pandey BK, Huang G, Bhosale R, Hartman S, Sturrock CJ, et al. 2021. Plant roots sense soil compaction through restricted ethylene diffusion. Science 371:276−80

doi: 10.1126/science.abf3013
[85]

Fruleux A, Verger S, Boudaoud A. 2019. Feeling stressed or strained? A biophysical model for cell wall mechanosensing in plants. Frontiers in Plant Science 10:757

doi: 10.3389/fpls.2019.00757
[86]

Xu SL, Rahman A, Baskin TI, Kieber JJ. 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. The Plant Cell 20:3065−79

doi: 10.1105/tpc.108.063354
[87]

Li D, Mou W, Van de Poel B, Chang C. 2022. Something old, something new: Conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Current Opinion in Plant Biology 65:102116

doi: 10.1016/j.pbi.2021.102116
[88]

Mou W, Kao YT, Michard E, Simon AA, Li D, et al. 2020. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communications 11:4082

doi: 10.1038/s41467-020-17819-9
[89]

Turupcu A, Almohamed W, Oostenbrink C, Seifert GJ. 2018. A speculation on the tandem fasciclin 1 repeat of FLA4 proteins in angiosperms. Plant Signaling & Behavior 13:e1507403

doi: 10.1080/15592324.2018.1507403
[90]

Xue H, Veit C, Abas L, Tryfona T, Maresch D, et al. 2017. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. Plant Journal 91:613−30

doi: 10.1111/tpj.13591
[91]

Griffiths JS, Tsai AY, Xue H, Voiniciuc C, Sola K, et al. 2014. SALT-OVERLY SENSITIVE5 mediates Arabidopsis seed coat mucilage adherence and organization through pectins. Plant Physiology 165:991−1004

doi: 10.1104/pp.114.239400
[92]

Gravino M, Savatin DV, Macone A, De Lorenzo G. 2015. Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. The Plant Journal 84:1073−86

doi: 10.1111/tpj.13057
[93]

Polko JK, Barnes WJ, Voiniciuc C, Doctor S, Steinwand B, et al. 2018. SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane. Current Biology 28:3174−82.e6

doi: 10.1016/j.cub.2018.07.076
[94]

Wang W, Fei Y, Wang Y, Song B, Li L, et al. 2023. SHOU4/4L link cell wall cellulose synthesis to pattern-triggered immunity. New Phytologist 238:1620−35

doi: 10.1111/nph.18829
[95]

Zhao C, Tang Y, Wang J, Zeng Y, Sun H, et al. 2021. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytologist 230:1078−94

doi: 10.1111/nph.17218
[96]

Li J, Li Q, Wang W, Zhang X, Chu C, et al. 2023. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO Journal 42:e114220−e20

doi: 10.15252/embj.2023114220
[97]

Rebaque D, Del Hierro I, López G, Bacete L, Vilaplana F, et al. 2021. Cell wall‐derived mixed‐linked β‐1, 3/1, 4‐glucans trigger immune responses and disease resistance in plants. Plant Journal 106:601−15

doi: 10.1111/tpj.15185