[1]

Song S, Tang C, Cheng H, Shu K. 2024. Research progress in regulation of seed germination. Scientia Sinica Vitae 54:1226−53

doi: 10.1360/SSV-2023-0324
[2]

Xu F, Tang J, Wang S, Cheng X, Wang H, et al. 2022. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics 54(12):1972−82

doi: 10.1038/s41588-022-01240-7
[3]

Bewley J, Bradford K, Hilhorst H, Konogaki H. 2013. Seed: physiology of development, germination and dormancy, 3rd edition. New York: Springer. xiii, 392 pp doi: 10.1007/978-1-4614-4693-4

[4]

Sohn SI, Pandian S, Kumar TS, Zoclanclounon YAB, Muthuramalingam P, et al. 2021. Seed dormancy and pre-harvest sprouting in rice—an updated overview. International Journal of Molecular Sciences 22:11804

doi: 10.3390/ijms222111804
[5]

Zhao J, He Y, Zhang H, Wang Z. 2024. Advances in the molecular regulation of seed germination in plants. Seed Biology 3:e006

doi: 10.48130/seedbio-0024-0005
[6]

Nonogaki H. 2019. Seed germination and dormancy: the classic story, new puzzles, and evolution. Journal of Integrative Plant Biology 61(5):541−63

doi: 10.1111/jipb.12762
[7]

Zubo YO, Schaller GE. 2020. Role of the cytokinin-activated type-B response regulators in hormone crosstalk. Plants 9(2):166

doi: 10.3390/plants9020166
[8]

Song S, Liu J, Xu H, Liu X, Huang H. 2020. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination. Scientia Agricultura Sinica 53(05):857−73

doi: 10.3864/j.issn.0578-1752.2020.05.001
[9]

Ito T, Okada K, Fukazawa J, Takahashi Y. 2018. DELLA-dependent and -independent gibberellin signaling. Plant Signaling & Behavior 13(3):e1445933

doi: 10.1080/15592324.2018.1445933
[10]

North HM, De Almeida A, Boutin JP, Frey A, To A, et al. 2007. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. The Plant Journal 50(5):810−24

doi: 10.1111/j.1365-313X.2007.03094.x
[11]

Yuan Z, Fan K, Wang Y, Tian L, Zhang C, et al. 2021. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances. Plant Physiology 186(1):469−82

doi: 10.1093/plphys/kiab059
[12]

Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, et al. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology 134(4):1439−49

doi: 10.1104/pp.103.037614
[13]

Dejonghe W, Okamoto M, and Cutler SR. 2018. Small molecule probes of ABA biosynthesis and signaling. Plant and Cell Physiology 59(8):1490−99

doi: 10.1093/pcp/pcy126
[14]

Soon FF, Ng LM, Zhou XE, West GM, Kovach A, et al. 2012. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335(6064):85−88

doi: 10.1126/science.1215106
[15]

Yu J, Mao C, Zhong Q, Yao X, Li P, et al. 2021. OsNAC2 is involved in multiple hormonal pathways to mediate germination of rice seeds and establishment of seedling. Frontiers in Plant Science 12:699303

doi: 10.3389/fpls.2021.699303
[16]

Chen Y, Xiang Z, Liu M, Wang S, Zhang L, et al. 2023. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice. Plant, Cell & Environment 46(4):1384−401

doi: 10.1111/pce.14480
[17]

Sun L, Li J, Liu Y, Noman A, Chen L, et al. 2022. Transcriptome profiling in rice reveals a positive role for OsNCED3 in defense against the brown planthopper, Nilaparvata lugens. BMC Genomics 23(1):634

doi: 10.1186/s12864-022-08846-5
[18]

Bhatnagar N, Min MK, Choi EH, Kim N, Moon SJ, et al. 2017. The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10. Plant Molecular Biology 93(4−5):389−401

doi: 10.1007/s11103-016-0568-2
[19]

Wang Q, Lin Q, Wu T, Duan E, Huang Y, et al. 2020. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Science 298:110570

doi: 10.1016/j.plantsci.2020.110570
[20]

Lou D, Wang H, Liang G, and Yu D. 2017. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Frontiers in Plant Science 8:993

doi: 10.3389/fpls.2017.00993
[21]

Song S, Dai X, Zhang WH. 2012. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. Journal of Experimental Botany 63(15):5559−68

doi: 10.1093/jxb/ers206
[22]

Xie W, Li X, Wang S, and Yuan, M. 2021. OsWRKY53 promotes abscisic acid accumulation to accelerate leaf senescence and inhibit seed germination by downregulating abscisic acid catabolic genes in rice. Frontiers in Plant Science 12:816156

doi: 10.3389/fpls.2021.816156
[23]

Huang S, Hu L, Zhang S, Zhang M, Jiang W, et al. 2021. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance. International Journal of Molecular Sciences 22(16):8625

doi: 10.3390/ijms22168625
[24]

Wang R, Yang X, Guo S, Wang Z, Zhang Z, et al. 2021. MiR319-targeted OsTCP21 and OsGAmyb regulate tillering and grain yield in rice. Journal of Integrative Plant Biology 63(7):1260−72

doi: 10.1111/jipb.13097
[25]

Wang G, Li X, Ye N, Huang M, Feng L, et al. 2021. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist 230(5):1925−39

doi: 10.1111/nph.17300
[26]

Zhao B, Zhang H, Chen T, Ding L, Zhang L, et al. 2022. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. Journal of Integrative Plant Biology 64(6):1246−63

doi: 10.1111/jipb.13266
[27]

Qin P, Zhang G, Hu B, Wu J, Chen W, et al. 2021. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Science Advances 7(3):eabc8873

doi: 10.1126/sciadv.abc8873
[28]

Li Y, Zhou J, Li Z, Qiao J, Quan R, et al. 2022. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology 189(2):1110−27

doi: 10.1093/plphys/kiac125
[29]

Wang M, Li W, Fang C, Xu F, Liu Y, et al. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics 50(10):1435−41

doi: 10.1038/s41588-018-0229-2
[30]

Zhang S, Zhu L, Shen C, Ji Z, Zhang H, et al. 2021. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell 33(3):566−80

doi: 10.1093/plcell/koaa037
[31]

Miao C, Xiao L, Hua K, Zou C, Zhao Y, et al. 2018. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America 115(23):6058−63

doi: 10.1073/pnas.1804774115
[32]

Li C, Shen H, Wang T, Wang X. 2015. ABA regulates subcellular redistribution of OsABI-LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa. Plant and Cell Physiology 56(12):2396−408

doi: 10.1093/pcp/pcv154
[33]

Yoshida H, Hirano K, Yano K, Wang F, Mori M, et al. 2022. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination. Nature Communications 13(1):5665

doi: 10.1038/s41467-022-33318-5
[34]

Zhang C, Wang H, Tian X, Lin X, Han Y, et al. 2024. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nature Communications 15(1):2211

doi: 10.1038/s41467-024-46420-7
[35]

Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, et al. 2010. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology 167(17):1512−20

doi: 10.1016/j.jplph.2010.05.008
[36]

Du L, Xu F, Fang J, Gao S, Tang J, et al. 2018. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. The Plant Journal 95(3):545−56

doi: 10.1111/tpj.13970
[37]

Guo N, Tang S, Wang Y, Chen W, An R, et al. 2024. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nature Communications 15(1):1134

doi: 10.1038/s41467-024-45402-z
[38]

Zong W, Tang N, Yang J, Peng L, Ma S, et al. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171:2810−25

doi: 10.1104/pp.16.00469
[39]

Fan X, Gao F, Liu Y, Huang W, Yang Y, et al. 2025. The transcription factor CCT30 promotes rice preharvest sprouting by regulating sugar signalling to inhibit the ABA-mediated pathway. Plant Biotechnology Journal 23(2):579−91

doi: 10.1111/pbi.14521
[40]

Wang J, Deng Q, Li Y, Yu Y, Liu X, et al. 2020. Transcription factors Rc and OsVP1 coordinately regulate preharvest sprouting tolerance in red pericarp rice. Journal of Agricultural and Food Chemistry 68(50):14748−57

doi: 10.1021/acs.jafc.0c04748
[41]

Chen W, Wang W, Lyu Y, Wu Y, Huang P, et al. 2021. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. The Crop Journal 9:68−78

doi: 10.1016/j.cj.2020.06.005
[42]

Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, et al. 2010. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America 107(13):5792−97

doi: 10.1073/pnas.0911965107
[43]

Park GG, Park JJ, Yoon J, Yu SN, An G. 2010. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Molecular Biology 74(4−5):467−78

doi: 10.1007/s11103-010-9687-3
[44]

Li C, Zheng L, Wang X, Hu Z, Zheng Y, et al. 2019. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Science 285:1−13

doi: 10.1016/j.plantsci.2019.04.023
[45]

Dill A, Jung HS, Sun TP. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences of the United States of America 98(24):14162−67

doi: 10.1073/pnas.251534098
[46]

Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, et al. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20(10):2603−18

doi: 10.1105/tpc.108.060913
[47]

Xing MQ, Chen SH, Zhang XF, Xue HW. 2023. Rice OsGA2ox9 regulates seed GA metabolism and dormancy. Plant Biotechnology Journal 21(12):2411−13

doi: 10.1111/pbi.14067
[48]

Duan M, Ke XJ, Lan HX, Yuan X, Huang P, et al. 2021. A Cys2/His2 zinc finger protein acts as a repressor of the green revolution gene SD1/OsGA20ox2 in rice (Oryza sativa L.). Plant and Cell Physiology 61(12):2055−66

doi: 10.1093/pcp/pcaa120
[49]

Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, and Oñate-Sánchez L. 2020. An updated overview on the regulation of seed germination. Plants 9(6):703

doi: 10.3390/plants9060703
[50]

Sajeev N, Koornneef M, and Bentsink L. 2024. A commitment for life: decades of unraveling the molecular mechanisms behind seed dormancy and germination. The Plant Cell 36(5):1358−76

doi: 10.1093/plcell/koad328
[51]

He Y, Zhu M, Li Z, Jiang S, He Z, et al. 2021. IPA1 negatively regulates early rice seedling development by interfering with starch metabolism via the GA and WRKY pathways. International Journal of Molecular Sciences 22(12):6605

doi: 10.3390/ijms22126605
[52]

Miao C, Wang Z, Zhang L, Yao J, Hua K, et al. 2019. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nature Communications 10(1):3822

doi: 10.1038/s41467-019-11830-5
[53]

Su S, Hong J, Chen X, Zhang C, Chen M, et al. 2021. Gibberellins orchestrate panicle architecture mediated by DELLA–KNOX signalling in rice. Plant Biotechnology Journal 19(11):2304−18

doi: 10.1111/pbi.13661
[54]

Wang H, Hou Y, Wang S, Tong X, Tang L, et al. 2021. WRKY72 negatively regulates seed germination through interfering gibberellin pathway in rice. Rice Science 28(1):1−5

doi: 10.1016/j.rsci.2020.11.001
[55]

Ye H, Feng J, Zhang L, Zhang J, Mispan MS, et al. 2015. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiology 169(3):2152−65

doi: 10.1104/pp.15.01202
[56]

Wu J, Zhu C, Pang J, Zhang X, Yang C, et al. 2014. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. The Plant Journal 80(6):1118−30

doi: 10.1111/tpj.12714
[57]

Zhang H, Li M, He D, Wang K, Yang P. 2020. Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice. PLoS Genetics 16(1):e1008562

doi: 10.1371/journal.pgen.1008562
[58]

Huang X, Lu Z, Wang X, Ouyang Y, Chen W, et al. 2016. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3. The Plant Journal 87(3):305−17

doi: 10.1111/tpj.13202
[59]

Cho SH, Kang K, Lee SH, Lee IJ, Paek NC. 2016. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). Journal of Experimental Botany 67(6):1677−87

doi: 10.1093/jxb/erv559
[60]

Liu X, Li Z, Hou Y, Wang Y, Wang H, et al. 2019. Protein interactomic analysis of SAPKs and ABA-Inducible bZIPs revealed key roles of SAPK10 in rice flowering. International Journal of Molecular Sciences 20(6):1427

doi: 10.3390/ijms20061427
[61]

Tang L, Xu H, Wang Y, Wang H, Li Z, et al. 2021. OsABF1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L). International Journal of Molecular Sciences 22(22):12220

doi: 10.3390/ijms222212220
[62]

Lin Q, Zhang Z, Wu F, Feng M, Sun Y, et al. 2020. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. The Plant Cell 32(6):1973−87

doi: 10.1105/tpc.20.00101
[63]

Shu K, Zhou W, Yang W. 2018. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism. New Phytologist 217(3):977−83

doi: 10.1111/nph.14880
[64]

Zeng W, Li J, Li D, Lu J, Pan Y, et al. 2025. Interaction between OsLEC1 and OsHDA710 positively regulates callus formation in rice. Plant Physiology and Biochemistry 223:109826

doi: 10.1016/j.plaphy.2025.109826
[65]

Sun J, Zhang G, Cui Z, Kong X, Yu X, et al. 2022. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h. Nature Communications 13(1):5664

doi: 10.1038/s41467-022-33320-x
[66]

Hu Y, Han X, Yang M, Zhang M, Pan J, et al. 2019. The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 31(7):1520−38

doi: 10.1105/tpc.18.00825
[67]

Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, et al. 2010. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genetics 6(9):e1001098

doi: 10.1371/journal.pgen.1001098
[68]

Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, et al. 2015. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiology 169(1):73−84

doi: 10.1104/pp.15.00663
[69]

Yang C, Lu X, Ma B, Chen SY, Zhang JS. 2015. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Molecular Plant 8(4):495−505

doi: 10.1016/j.molp.2015.01.003
[70]

Huang YH, Han JQ, Ma B, Cao WQ, Li XK, et al. 2023. A translational regulator MHZ9 modulates ethylene signaling in rice. Nature Communications 14(1):4674

doi: 10.1038/s41467-023-40429-0
[71]

Qiao J, Quan R, Wang J, Li Y, Xiao D, et al. 2024. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Communications 5(3):100771

doi: 10.1016/j.xplc.2023.100771
[72]

Song SQ, Liu J, Xu HH, Zhang Q, Huang H, et al. 2019. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy. Acta Agronomica Sinica 45(7):969−81

doi: 10.3724/SP.J.1006.2019.84175
[73]

Jia J, Luo Y, Wu Z, Ji Y, Liu S, et al. 2024. OsJMJ718, a histone demethylase gene, positively regulates seed germination in rice. The Plant Journal 118(1):191−202

doi: 10.1111/tpj.16600
[74]

Liu J, Song S. 2024. Seed biology. Beijing: Science Press

[75]

Song S, Liu J, Yang H, Zhang W, Zhang Q, et al. 2021. Research progress in cytokinin regulating seed development, dormancy and germination regulated by cytokinin. Chinese Bulletin of Botany 56(2):218−31

doi: 10.11983/CBB20141
[76]

Leyser O. 2018. Auxin signaling. Plant Physiology 176(1):465−79

doi: 10.1104/pp.17.00765
[77]

Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63(8):2853−72

doi: 10.1093/jxb/ers091
[78]

Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology 13(3):a039867

doi: 10.1101/cshperspect.a039867
[79]

Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, et al. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiology 123(2):563−74

doi: 10.1104/pp.123.2.563
[80]

Gomes GLB, Scortecci KC. 2021. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology 23(6):894−904

doi: 10.1111/plb.13303
[81]

Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology 64(2):371−92

doi: 10.1111/jipb.13225
[82]

Hussain S, Nanda S, Zhang J, Rehmani MIA, Suleman M, et al. 2021. Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants 10(8):1732

doi: 10.3390/plants10081732
[83]

Kurepa J, Smalle JA. 2022. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Sciences 23(4):1933

doi: 10.3390/ijms23041933
[84]

He J, Duan Y, Hua D, Fan G, Wang L, et al. 2012. DEXH box RNA helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. The Plant Cell 24(5):1815−33

doi: 10.1105/tpc.112.098707
[85]

Choi HS, Seo M, Cho HT. 2018. Two TPL-binding motifs of ARF2 are involved in repression of auxin responses. Frontiers in Plant Science 9:372

doi: 10.3389/fpls.2018.00372
[86]

Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, et al. 2018. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytologist 218(4):1612−30

doi: 10.1111/nph.15090
[87]

Li Y, Han S, and Qi Y. 2023. Advances in structure and function of auxin response factor in plants. Journal of Integrative Plant Biology 65(3):617−32

doi: 10.1111/jipb.13392
[88]

He Y, Zhao J, Yang B, Sun S, Peng L, et al. 2020. Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice. Plant Biotechnology Journal 18(9):1933−45

doi: 10.1111/pbi.13353
[89]

Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, et al. 2013. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6(270):rs8

doi: 10.1126/scisignal.2003509
[90]

Nguyen HN, Perry L, Kisiala A, Olechowski H, Neil Emery RJ. 2020. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.). Planta 252(5):76

doi: 10.1007/s00425-020-03483-2
[91]

Chitnis VR, Gao F, Yao Z, Jordan MC, Park S, et al. 2014. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS One 9(1):e87543

doi: 10.1371/journal.pone.0087543
[92]

Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany 62(8):2431−52

doi: 10.1093/jxb/err004
[93]

Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57:431−49

doi: 10.1146/annurev.arplant.57.032905.105231
[94]

Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. Development 145(4):dev149344

doi: 10.1242/dev.149344
[95]

Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, et al. 2024. Spatially distributed cytokinins: metabolism, signaling, and transport. Plant Communications 5(7):100936

doi: 10.1016/j.xplc.2024.100936
[96]

Zubko E, Adams CJ, Macháèková I, Malbeck J, Scollan C, et al. 2002. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. The Plant Journal 29(6):797−808

doi: 10.1046/j.1365-313X.2002.01256.x
[97]

Yuan J, Chen D, Ren Y, Zhang X, Zhao J. 2008. Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiology 146(4):1637−50

doi: 10.1104/pp.107.110304
[98]

Rijavec T, Dermastia M. 2010. Cytokinins and their function in developing seeds. Acta Chimica Slovenica 57(3):617−29

[99]

Xiong M, Yu J, Wang J, Gao Q, Huang L, et al. 2022. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology 189:402−18

doi: 10.1093/plphys/kiac043
[100]

Ablazov A, Votta C, Fiorilli V, Wang JY, Aljedaani F, et al. 2023. ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiology 191(1):382−99

doi: 10.1093/plphys/kiac472
[101]

Zhao J, Liu S, Zhao X, Huang Z, Sun S, et al. 2024. Rice gene OsUGT75A regulates seedling emergence under deep-sowing conditions. The Crop Journal 12(1):133−41

doi: 10.1016/j.cj.2023.10.010
[102]

Lee S, Kim SG, Park CM. 2010. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist 188(2):626−37

doi: 10.1111/j.1469-8137.2010.03378.x
[103]

Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, et al. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications 9(1):2132

doi: 10.1038/s41467-018-04437-9
[104]

Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, et al. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20(2):55−67

doi: 10.1017/S0960258510000012
[105]

El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, et al. 2015. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell & Environment 38(2):364−74

doi: 10.1111/pce.12371
[106]

Arc E, Sechet J, Corbineau, Rajjou F, Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science 4:63

doi: 10.3389/fpls.2013.00063
[107]

Kubeš M, Napier R. 2019. Non-canonical auxin signalling: fast and curious. Journal of Experimental Botany 70(10):2609−14

doi: 10.1093/jxb/erz111
[108]

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, et al. 2005. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. The Plant Cell 17(8):2204−16

doi: 10.1105/tpc.105.033076
[109]

Cheng X, Zhang S, E Z, Yang Z, Cao S, et al. 2025. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. The Plant Cell 37(1):koae304

doi: 10.1093/plcell/koae304
[110]

Yang L, Cheng Y, Yuan C, Zhou Y, Huang Q, et al. 2025. The long noncoding RNA VIVIpary promotes seed dormancy release and pre-harvest sprouting through chromatin remodeling in rice. Molecular Plant 18(6):978−94

doi: 10.1016/j.molp.2025.04.010
[111]

Song X, Tang S, Liu H, Meng Y, Luo H, et al. 2025. Inheritance of acquired adaptive cold tolerance in rice through DNA methylation. Cell 188:4213−4224.e12

doi: 10.1016/j.cell.2025.04.036