[1]

Li H, Li Y, Yan H, Bao T, Shan X, et al. 2024. The complexity of volatile terpene biosynthesis in roses: Particular insights into β-citronellol production. Plant Physiology 196:1908−22

doi: 10.1093/plphys/kiae444
[2]

Xia Z, Zhou Q, Yang S, Song F, Li Z, et al. 2025. Optimization strategy for black tea digital blending by fusing image and spectral information. Food Research International 202:115563

doi: 10.1016/j.foodres.2024.115563
[3]

Venkatesha KT, Gupta A, Rai AN, Jambhulkar SJ, Bisht R, et al. 2022. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): a review. Industrial Crops and Products 184:114984

doi: 10.1016/j.indcrop.2022.114984
[4]

Cui WH, Du XY, Zhong MC, Fang W, Suo ZQ, et al. 2022. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China. Horticulture Research 9:uhab051

doi: 10.1093/hr/uhab051
[5]

Kang Y, Wu K, Sun J, Liu C, Su C, et al. 2022. Preparation of Kushui Rose (Rosa setate x Rosa rugosa) essential oil fractions by double molecular distillation: Aroma and biological activities. Industrial Crops and Products 175:114230

doi: 10.1016/j.indcrop.2021.114230
[6]

Wei S, Wei L, Xie B, Li J, Lyu J, et al. 2024. Characterization of volatile profile from different coriander (Coriandrum sativum L.) varieties via HS-SPME/GC−MS combined with E-nose analyzed by chemometrics. Food Chemistry 457:140128

doi: 10.1016/j.foodchem.2024.140128
[7]

Guo X, Ho CT, Wan X, Zhu H, Liu Q, et al. 2021. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry 341:128230

doi: 10.1016/j.foodchem.2020.128230
[8]

Zhao Q, Gu L, Li Y, Zhi H, Luo J, et al. 2023. Volatile composition and classification of Paeonia lactiflora flower aroma types and identification of the fragrance-related genes. International Journal of Molecular Sciences 24:9410

doi: 10.3390/ijms24119410
[9]

Zhang Y, Zhi H, Qu L, Su D, Luo J. 2024. Analysis of flower volatile compounds and odor classification of 17 tree peony cultivars. Scientia Horticulturae 338:113665

doi: 10.1016/j.scienta.2024.113665
[10]

Feng LG, Chen C, Sheng LX, Liu P, Tao J, et al. 2010. Comparative analysis of headspace volatiles of Chinese Rosa rugosa. Molecules 15:8390−99

doi: 10.3390/molecules15118390
[11]

Sun Y, Wang W, Zhao L, Zheng C, Ma F. 2019. Changes in volatile organic compounds and differential expression of aroma-related genes during flowering of Rosa rugosa 'Shanxian'. Horticulture Environment and Biotechnology 60:741−51

doi: 10.1007/s13580-019-00166-0
[12]

Yang L, Liao X, Cheng P, Zhang ZG, Li H. 2020. Composition and diurnal variation of floral scent emission in Rosa rugosa Thunb and Tulipa gesneriana L. Open Chemistry 18:1030−40

doi: 10.1515/chem-2020-0087
[13]

Cheng X, Feng Y, Chen D, Luo C, Yu X, et al. 2022. Evaluation of Rosa germplasm resources and analysis of floral fragrance components in R. rugosa. Frontiers in Plant Science 13:1026763

doi: 10.3389/fpls.2022.1026763
[14]

Pathak G, Dudhagi SS, Raizada S, Singh RK, Sane AP, et al. 2023. Phosphomevalonate kinase regulates the MVA/MEP pathway in mango during ripening. Plant Physiology and Biochemistry 196:174−85

doi: 10.1016/j.plaphy.2023.01.030
[15]

Du F, Wang T, Fan JM, Liu ZZ, Zong JX, et al. 2019. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Horticulture Research 6:110

doi: 10.1038/s41438-019-0192-9
[16]

Zhao Q, Li Y, Gu L, Li S, He D, et al. 2025. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in the flower of Paeonia lactiflora. Postharvest Biology and Technology 219:113231

doi: 10.1016/j.postharvbio.2024.113231
[17]

Magnard JL, Bony AR, Bettini F, Campanaro A, Blerot B, et al. 2018. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Plant Physiology and Biochemistry 127:74−87

doi: 10.1016/j.plaphy.2018.03.009
[18]

Sheng L, Zeng Y, Wei T, Zhu M, Fang X, et al. 2018. Cloning and functional verification of genes related to 2-phenylethanol biosynthesis in Rosa rugosa. Genes 9:576

doi: 10.3390/genes9120576
[19]

Roccia A, Hibrand-Saint Oyant L, Cavel E, Caissard JC, Machenaud J, et al. 2019. Biosynthesis of 2-phenylethanol in rose petals is linked to the expression of one allele of RhPAAS. Plant physiology 179:1064−79

doi: 10.1104/pp.18.01468
[20]

Zhang T, Guo Y, Shi X, Yang Y, Chen J, et al. 2020. Overexpression of LiTPS2 from a cultivar of lily (Lilium 'Siberia') enhances the monoterpenoids content in tobacco flowers. Plant Physiology and Biochemistry 151:391−99

doi: 10.1016/j.plaphy.2020.03.048
[21]

Wu Q, Zhao X, Chen C, Zhang Z, Yu F. 2020. Metabolite profiling and classification of developing Styrax tonkinensis kernels. Metabolites 10:21

doi: 10.3390/metabo10010021
[22]

Burdock GA. 2010. Fenaroli's handbook of flavor ingredients. Boca Raton: CRC Press. pp. 1092−633 doi: 10.1201/9781439847503

[23]

Zan W, Wu Q, Dou S, Wang Y, Zhu Z, et al. 2024. Analysis of flower color diversity revealed the co-regulation of cyanidin and peonidin in the red petals coloration of Rosa rugosa. Plant Physiology and Biochemistry 216:109126

doi: 10.1016/j.plaphy.2024.109126
[24]

Wang Y, Li S, Zhu Z, Xu Z, Qi S, et al. 2022. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa. Frontiers in Plant Science 13:1021521

doi: 10.3389/fpls.2022.1021521
[25]

Kumar A, Gautam RD, Kumar R, Chauhan R, Kumar M, et al. 2021. Floral studies of palmarosa [Cymbopogon martinii (Roxb.) W. Watson] and chemical insights during inflorescence development. Industrial Crops and Products 171:113960

doi: 10.1016/j.indcrop.2021.113960
[26]

Shang J, Feng D, Liu H, Niu L, Li R. et al. 2024. Evolution of the biosynthetic pathways of terpene scent compounds in roses. Current Biology 34:3550−63

doi: 10.1016/j.cub.2024.06.075
[27]

Qi S, Wang X, Wu Q, Xing S, Li X, et al. 2023. Morphological, physiological and transcriptomic analyses reveal potential candidate genes responsible for salt stress in Rosa rugosa. Ornamental Plant Research 3:21

doi: 10.48130/opr-2023-0021
[28]

Ou Q, You H, Yi A, Wang Z, Xie Q, et al. 2025. Metabolome and transcriptome revealed the biosynthesis pathway of aromatic compounds in Ocimum basilicum var. pilosum. Ornamental Plant Research 5:e025

doi: 10.48130/opr-0025-0024
[29]

Xiao Z, Luo J, Niu Y, Wu M. 2018. Characterization of key aroma compounds from different rose essential oils using gas chromatography-mass spectrometry, gas chromatography-olfactometry and partial least squares regression. Natural Product Research 32:1567−72

doi: 10.1080/14786419.2017.1389933
[30]

Ma L, Gao M, Zhang L, Qiao Y, Li J, et al. 2022. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chemistry 378:132058

doi: 10.1016/j.foodchem.2022.132058
[31]

Yue Y, Shi T, Liu J, Tian Q, Yang X, et al. 2022. Genomic, metabonomic and transcriptomic analyses of sweet Osmanthus varieties provide insights into floral aroma formation. Scientia Horticulturae 306:111442

doi: 10.1016/j.scienta.2022.111442
[32]

Zang F, Ma Y, Tu X, Huang P, Wu Q, et al. 2021. A high-quality chromosome-level genome of wild Rosa rugosa. DNA Research 28:dsab017

doi: 10.1093/dnares/dsab017
[33]

Ma X, Li D, Cai J, Yang S, Wang D, et al. 2025. Auxin response factor, RhARF8 contributes to rose flower color fading via regulating anthocyanin biosynthesis by directly activating RhCHSa/c promoter activity. Ornamental Plant Research 5:e021

doi: 10.48130/opr-0025-0019
[34]

Yu Z, Zhao C, Zhang G, Teixeira da Silva JA, Duan J. 2020. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis. International Journal of Molecular Sciences 21:5419

doi: 10.3390/ijms21155419
[35]

Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P, et al. 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349:81−83

doi: 10.1126/science.aab0696
[36]

Chen XM, Kobayashi H, Sakai M, Hirata H, Asai T, et al. 2011. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. Journal of Plant Physiology 168:88−95

doi: 10.1016/j.jplph.2010.06.011
[37]

Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157

doi: 10.3389/fpls.2022.860157
[38]

Zhu Z, Xing S, Zan W, Wang Y, Wu Q, et al. 2024. An O-methyltransferase gene, RrCCoAOMT1, participates in the red flower color formation of Rosa rugosa. Scientia Horticulturae 336:113402

doi: 10.1016/j.scienta.2024.113402
[39]

Wang X, Zhao F, Wu Q, Xing S, Yu Y, et al. 2023. Physiological and transcriptome analyses to infer regulatory networks in flowering transition of Rosa rugosa. Ornamental Plant Research 3:4

doi: 10.48130/opr-2023-0004
[40]

Yue R, Li Y, Qi Y, Liang X, Zheng Z, et al. 2025. Divergent MYB paralogs determine spatial distribution of linalool mediated by JA and DNA demethylation participating in aroma formation and cold tolerance of tea plants. Plant Biotechnology Journal 23:1455−75

doi: 10.1111/pbi.14598