[1]

López A, Arazuri S, García I, Mangado J, Jarén C. 2013. A review of the application of near-infrared spectroscopy for the analysis of potatoes. Journal of Agricultural and Food Chemistry 61:5413−24

doi: 10.1021/jf401292j
[2]

Barrett DM, Beaulieu JC, Shewfelt R. 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition 50:369−89

doi: 10.1080/10408391003626322
[3]

Pesis E. 1995. Induction of fruit aroma and quality by post-harvest application of natural metabolites or anaerobic conditions. In Fruit Analysis, eds. Linskens HF, Jackson JF. vol. 18. Berlin, Heidelberg: Springer. pp. 19−35 doi: 10.1007/978-3-642-79660-9_2

[4]

Morris WL, Shepherd T, Verrall SR, McNicol JW, Taylor MA. 2010. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 71:1765−73

doi: 10.1016/j.phytochem.2010.07.003
[5]

Beaulieu JC, Lea JM. 2003. Volatile and quality changes in fresh-cut mangos prepared from firm-ripe and soft-ripe fruit, stored in clamshell containers and passive MAP. Postharvest Biology and Technology 30:15−28

doi: 10.1016/S0925-5214(03)00081-4
[6]

Pu H, Wei J, Wang L, Huang J, Chen X, et al. 2017. Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. Journal of Cereal Science 76:236−42

doi: 10.1016/j.jcs.2017.06.020
[7]

Wijesinha-Bettoni R, Mouillé B. 2019. The contribution o fpotatoes to global food security, nutrition and healthy diets. American Journal of Potato Research 96(2):139−149

doi: 10.1007/s12230-018-09697-1
[8]

Rasheed H, Ahmad D, Bao J. 2022. Genetic diversity and health properties of polyphenols in potato. Antioxidants 11:603

doi: 10.3390/antiox11040603
[9]

Singh B, Singh J, Singh JP, Kaur A, Singh N. 2020. Phenolic compounds in potato (Solanum tuberosum L.) peel and their health-promoting activities. International Journal of Food Science & Technology 55:2273−81

doi: 10.1111/ijfs.14361
[10]

Andre CM, Legay S, Iammarino C, Ziebel J, Guignard C, et al. 2014. The potato in the human diet: a complex matrix with potential health benefits. Potato Research 57:201−14

doi: 10.1007/s11540-015-9287-3
[11]

Booysen L, Viljoen AT, Schönfeldt HC. 2013. A comparison of the eating quality of selected potato cultivars from two potato production regions in South Africa. Journal of the Science of Food and Agriculture 93:509−16

doi: 10.1002/jsfa.5813
[12]

Zhang W, Li L, Zhao Y, Yang H, Zhang X, et al. 2025. Characterization of differences in volatile compounds and metabolites of six varieties of potato with different processing properties. Food Chemistry: X 25:102116

doi: 10.1016/j.fochx.2024.102116
[13]

Leonel M, do Carmo EL, Fernandes AM, Soratto RP, Ebúrneo JAM, et al. 2017. Chemical composition of potato tubers: the effect of cultivars and growth conditions. Journal of Food Science and Technology 54:2372−78

doi: 10.1007/s13197-017-2677-6
[14]

Dhital SP, Lim HT. 2012. Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Research 55:97−108

doi: 10.1007/s11540-012-9212-y
[15]

Arvanitoyannis IS, Mavromatis AG, Vaitsi O, Korkovelos A, Golia E. 2012. Effect of genotype and geographical origin on potato properties (physical and sensory) for authenticity purposes. Journal of Agricultural Science 4:1−2

doi: 10.5539/jas.v4n4p63
[16]

Zhou H, Wang C, Shi L, Chang T, Yang H, et al. 2014. Effects of salts on physicochemical, microstructural and thermal properties of potato starch. Food Chemistry 156:137−43

doi: 10.1016/j.foodchem.2014.02.015
[17]

Hung CY, Yen GC. 2002. Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. Journal of Agricultural and Food Chemistry 50:2993−97

doi: 10.1021/jf011454y
[18]

Blanda G, Cerretani L, Comandini P, Toschi TG, Lercker G. 2010. Investigation of off-odour and off-flavour development in boiled potatoes. Food Chemistry 118:283−90

doi: 10.1016/j.foodchem.2009.04.135
[19]

Zhang W, Zhao Y, Yang H, Liu Y, Zhang Y, et al. 2024. Comparison analysis of bioactive metabolites in soybean, pea, mung bean, and common beans: reveal the potential variations of their antioxidant property. Food Chemistry 457:140137

doi: 10.1016/j.foodchem.2024.140137
[20]

Broeckling CD, Beger RD, Cheng LL, Cumeras R, Cuthbertson DJ, et al. 2023. Current practices in LC-MS untargeted metabolomics: a scoping review on the use of pooled quality control samples. Analytical Chemistry 95:18645−54

doi: 10.1021/acs.analchem.3c02924
[21]

Šimková D, Lachman J, Hamouz K, Vokál B. 2013. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chemistry 141:3872−80

doi: 10.1016/j.foodchem.2013.06.080
[22]

Singh N, Singh J, Singh Sodhi N. 2002. Morphological, thermal, rheological and noodle-making properties of potato and corn starch. Journal of the Science of Food and Agriculture 82:1376−83

doi: 10.1002/jsfa.1194
[23]

Dresow JF, Böhm H. 2009. The influence of volatile compounds of the flavour of raw, boiled and baked potatoes: impact of agricultural measures on the volatile components. Landbauforschung Volkenrode 59(4):309−38

[24]

Petersen MA, Poll L, Larsen LM. 1999. Identification of compounds contributing to boiled potato off-flavour ('POF'). LWT - Food Science and Technology 32:32−40

doi: 10.1006/fstl.1998.0506
[25]

Mandin O, Duckham SC, Ames JM. 1999. Volatile compounds from potato-like model systems. Journal of Agricultural and Food Chemistry 47:2355−59

doi: 10.1021/jf981277+
[26]

Jiang H, Duan W, Zhao Y, Liu X, Wen G, et al. 2023. Development of a flavor fingerprint using HS-GC-IMS for volatile compounds from steamed potatoes of different varieties. Foods 12(11):2252

doi: 10.3390/foods12112252
[27]

Coleman EC, Ho CT, Chang SS. 1981. Isolation and identification of volatile compounds from baked potatoes. Journal of Agricultural and Food Chemistry 29:42−48

doi: 10.1021/jf00103a012
[28]

Peng Z, Cheng L, Meng K, Shen Y, Wu D, et al. 2022. Retaining a large amount of resistant starch in cooked potato through microwave heating after freeze-drying. Current Research in Food Science 5:1660−67

doi: 10.1016/j.crfs.2022.09.023
[29]

Sinha M, Sørensen A, Ahamed A, Ahring BK. 2015. Production of hydrocarbons by Aspergillus carbonarius ITEM 5010. Fungal Biology 119:274−82

doi: 10.1016/j.funbio.2015.01.001
[30]

Feng B, Yang Z. 2018. Studies on diversity of higher fungi in Yunnan, southwestern China: a review. Plant Diversity 40:165−71

doi: 10.1016/j.pld.2018.07.001
[31]

Taylor MA, McDougall GJ, Stewart D. 2007. Potato flavour and texture. In Potato Biology and Biotechnology, eds. Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, et al. Amsterdam: Elsevier. pp. 525−40 doi: 10.1016/b978-044451018-1/50066-x

[32]

Katahira R, Ashihara H. 2006. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 225:115−26

doi: 10.1007/s00425-006-0334-9
[33]

Nara K, Miyoshi T, Honma T, Koga H. 2006. Antioxidative activity of bound-form phenolics in potato peel. Bioscience, Biotechnology, and Biochemistry 70:1489−91

doi: 10.1271/bbb.50552
[34]

Zhou H, Lutterodt H, Cheng Z, Yu LL. 2009. Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. Journal of Agricultural and Food Chemistry 57:4580−85

doi: 10.1021/jf900340b
[35]

Song Z, Qiao J, Tian D, Dai M, Guan Q, et al. 2023. Glutamic acid can prevent the browning of fresh-cut potatoes by inhibiting PPO activity and regulating amino acid metabolism. LWT 180:114735

doi: 10.1016/j.lwt.2023.114735
[36]

Alves Filho EG, Sousa VM, Rodrigues S, de Brito ES, Fernandes FAN. 2020. Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry 63:104911

doi: 10.1016/j.ultsonch.2019.104911
[37]

Jung SH, Kim BJ, Lee EH, Osborne NN. 2010. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochemistry International 57:713−21

doi: 10.1016/j.neuint.2010.08.005
[38]

Jiang S, Penner MH. 2022. The effect of p-coumaric acid on browning inhibition in potato polyphenol oxidase-catalyzed reaction mixtures. Foods 11:577

doi: 10.3390/foods11040577
[39]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[40]

Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, et al. 2018. A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences 5:29

doi: 10.3389/fmolb.2018.00029
[41]

Tzin V, Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant 3:956−72

doi: 10.1093/mp/ssq048
[42]

Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry 281:23357−66

doi: 10.1074/jbc.M602708200
[43]

Lichman BR. 2021. The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports 38:103−29

doi: 10.1039/D0NP00031K
[44]

Maoz I, Lewinsohn E, Gonda I. 2022. Amino acids metabolism as a source for aroma volatiles biosynthesis. Current Opinion in Plant Biology 67:102221

doi: 10.1016/j.pbi.2022.102221
[45]

Xing Y, Niu X, Wang N, Jiang W, Gao Y, et al. 2020. The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR. Sustainability 12:1588

doi: 10.3390/su12041588
[46]

Zhang S, Deng M, Shan M, Zhou C, Liu W, et al. 2018. Effect of straw incorporation on aldehyde emissions from a maize cropping system: a field experiment. Atmospheric Environment 189:116−24

doi: 10.1016/j.atmosenv.2018.07.005
[47]

Srikamwang C, Onsa NE, Sunanta P, Sangta J, Chanway CP, et al. 2023. Role of microbial volatile organic compounds in promoting plant growth and disease resistance in horticultural production. Plant Signaling & Behavior 18(1):2227440

doi: 10.1080/15592324.2023.2227440
[48]

Li X, Chen D, Carrión VJ, Revillini D, Yin S, et al. 2023. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nature Communications 14:5090

doi: 10.1038/s41467-023-40810-z
[49]

Sasaki Y, Kozaki A, Hatano M. 1997. Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proceedings of the National Academy of Sciences of the United States of America 94:11096−101

doi: 10.1073/pnas.94.20.11096
[50]

Dai L, Fu R, Guo X, Du Y, Zhang F, et al. 2022. Soil moisture variations in response to precipitation across different vegetation types on the northeastern Qinghai-Tibet Plateau. Frontiers in Plant Science 13:854152

doi: 10.3389/fpls.2022.854152
[51]

He M, Ding NZ. 2020. Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in Plant Science 11:562785

doi: 10.3389/fpls.2020.562785